Structural variation accounts for much of the variation among human genomes. Structural variants of all types are known to cause Mendelian disease and contribute to complex disease. Learn how long-read sequencing is enabling detection of the full spectrum of structural variants to advance the study of human disease, evolution and genetic diversity.
In this ASHG 2016 poster video, Martin Pollard from the Wellcome Trust Sanger Institute and the University of Cambridge describes an ambitious project to better represent natural variation in the complex MHC region by sequencing the locus in thousands of people from various populations in Africa. A pilot project in five populations has already revealed a lot of diversity in the region, which is important for human disease, vaccine response, and organ transplantation. Pollard says SMRT Sequencing is the only technology that can deliver the full-length haplotypes necessary to identify complete variation in this highly polymorphic complex. Plus: plans to…
Michael Lutz, from the Duke University Medical Center, discussed a recently published software tool that can now be used in a pipeline with SMRT Sequencing data to find structural variant biomarkers for neurodegenerative diseases with a focus on Alzheimer’s disease, ALS, and Lewy body dementia. His team is particularly interested in short sequence repeats and short tandem repeats, which have already been implicated in neurodegenerative disease.
In this AGBT 2017 poster, Ulf Gyllensten from Uppsala University presents two local reference genomes generated with PacBio and Bionano Genomics data. These assemblies include structural variation and repetitive regions that have been missed with previous short-read efforts, including some new genes not annotated in the human reference genome.
In this webinar, Emily Hatas of PacBio shares information about the applications and benefits of SMRT Sequencing in plant and animal biology, agriculture, and industrial research fields. This session contains an overview of several applications: whole-genome sequencing for de novo assembly; transcript isoform sequencing (Iso-Seq) method for genome annotation; targeted sequencing solutions; and metagenomics and microbial interactions. High-level workflows and best practices are discussed for key applications.
In this ASHG workshop presentation, Janet Song of Stanford School of Medicine shared research on resolving a tandem repeat array implicated in bipolar disorder and schizophrenia. These psychiatric diseases share a number of genomic risk variants, she noted, but scientists continue to search for a specific causal variant in the CACNA1C gene suggested by previous genome-wide association studies. SMRT Sequencing of this region in 16 individuals identified a series of 30-mer repeats, containing a total of about 50 variants. Analysis showed that 10 variants were linked to protective or risk haplotypes. Song aims to study the function of these variants…
Studying microbial genomics and infectious disease? Learn how the PacBio Sequel II System can help advance your research, with first-hand perspectives from scientists who are investigating SARS-CoV-2 and COVID-19. In this webinar, Melissa Laird-Smith (Mt. Sinai School of Medicine) discusses her work evaluating the impact of host immune restriction in health and disease with high resolution HLA typing. She is joined by Corey Watson (University of Louisville School of Medicine) who talks about overcoming complexity to elucidate the role of IGH haplotype diversity in antibody-mediated immunity. Hosted by Meredith Ashby, Director of Microbial Genomics at PacBio. Access additional PacBio resources…
Long-read mRNA sequencing such as PacBio’s Iso-Seq method offer high-throughput transcriptome profiling that circumvents the transcript assembly problem by sequencing full-length cDNA. The Iso-Seq method has emerged as the most reliable technology for fully characterizing isoforms and, in turn, help shed light on underlying disease mechanisms. Here, we have utilized the Iso-Seq method to sequence an Alzheimer’s disease whole brain?sample. This is a devastating neurodegenerative disease that affects ~44 million people worldwide, making it the most common form of dementia. Studies looking into disease mechanism have shown that changes in gene expression due to alternative splicing likely contribute to the…
The complex immune regions of the genome, including MHC and KIR, contain large copy number variants (CNVs), a high density of genes, hyper-polymorphic gene alleles, and conserved extended haplotypes (CEH) with enormous linkage disequilibrium (LDs). This level of complexity and inherent biases of short-read sequencing make it challenging for extracting immune region haplotype information from reference-reliant, shotgun sequencing and GWAS methods. As NGS based genome and exome sequencing and SNP arrays have become a routine for population studies, numerous efforts are being made for developing software to extract and or impute the immune gene information from these datasets. Despite these…
Goats are specialized in dairy, meat and fiber production, being adapted to a wide range of environmental conditions and having a large economic impact in developing countries. In the last years, there have been dramatic advances in the knowledge of the structure and diversity of the goat genome/transcriptome and in the development of genomic tools, rapidly narrowing the gap between goat and related species such as cattle and sheep. Major advances are: 1) publication of a de novo goat genome reference sequence; 2) Development of whole genome high density RH maps, and; 3) Design of a commercial 50K SNP array.…
Alzheimer’s disease (AD) is a devastating neurodegenerative disease that is genetically complex. Although great progress has been made in identifying fully penetrant mutations in genes such as APP, PSEN1 and PSEN2 that cause early-onset AD, these still represent a very small percentage of AD cases. Large-scale, genome-wide association studies (GWAS) have identified at least 20 additional genetic risk loci for the more common form of late-onset AD. However, the identified SNPs are typically not the actual risk variants, but are in linkage disequilibrium with the presumed causative variant (Van Cauwenberghe C, et al., The genetic landscape of Alzheimer disease: clinical…
The human immunoglobulin heavy chain locus (IGH) remains among the most understudied regions of the human genome. Recent efforts have shown that haplotype diversity within IGH is elevated and exhibits population specific patterns; for example, our re-sequencing of the locus from only a single chromosome uncovered >100 Kb of novel sequence, including descriptions of six novel alleles, and four previously unmapped genes. Historically, this complex locus architecture has hindered the characterization of IGH germline single nucleotide, copy number, and structural variants (SNVs; CNVs; SVs), and as a result, there remains little known about the role of IGH polymorphisms in inter-individual…
The major histocompatibility complex (MHC), or human leukocyte antigen (HLA) in humans, is a highly diverse gene family with a key role in immune response to disease; and has been implicated in auto-immune disease, cancer, infectious disease susceptibility, and vaccine response. It has clinical importance in the field of solid organ and bone marrow transplantation, where donors and recipient matching of HLA types is key to transplanted organ outcomes. The Sanger based typing (SBT) methods currently used in clinical practice do not capture the full diversity across this region, and require specific reference sequences to deconvolute ambiguity in HLA types.…
Alzheimer’s disease (AD) is a devastating neurodegenerative disease that is genetically complex. Although great progress has been made in identifying fully penetrant mutations in genes such as APP, PSEN1 and PSEN2 that cause early-onset AD, these still represent a very small percentage of AD cases. Large-scale, genome-wide association studies (GWAS) have identified at least 20 additional genetic risk loci for the more common form of late-onset AD. However, the identified SNPs are typically not the actual causal variants, but are in linkage disequilibrium with the presumed causative variant (Van Cauwenberghe C, et al., The genetic landscape of Alzheimer disease: clinical…
Over the past decades neurological disorders have been extensively studied producing a large number of candidate genomic regions and candidate genes. The SNPs identified in these studies rarely represent the true disease-related functional variants. However, more recently a shift in focus from SNPs to larger structural variants has yielded breakthroughs in our understanding of neurological disorders.Here we have developed candidate gene screening methods that combine enrichment of long DNA fragments with long-read sequencing that is optimized for structural variation discovery. We have also developed a novel, amplification-free enrichment technique using the CRISPR/Cas9 system to target genomic regions.We sequenced gDNA and…