Menu
April 21, 2020  |  

Analyses of the Complete Genome Sequence of the Strain Bacillus pumilus ZB201701 Isolated from Rhizosphere Soil of Maize under Drought and Salt Stress.

Bacillus pumilus ZB201701 is a rhizobacterium with the potential to promote plant growth and tolerance to drought and salinity stress. We herein present the complete genome sequence of the Gram-positive bacterium B. pumilus ZB201701, which consists of a linear chromosome with 3,640,542 base pairs, 3,608 protein-coding sequences, 24 ribosomal RNAs, and 80 transfer RNAs. Genome analyses using bioinformatics revealed some of the putative gene clusters involved in defense mechanisms. In addition, activity analyses of the strain under salt and simulated drought stress suggested its potential tolerance to abiotic stress. Plant growth-promoting bacteria-based experiments indicated that the strain promotes the salt tolerance of maize. The complete genome of B. pumilus ZB201701 provides valuable insights into rhizobacteria-mediated salt and drought tolerance and rhizobacteria-based solutions for abiotic stress in agriculture.


April 21, 2020  |  

Investigating the role of exudates in recruiting Streptomyces bacteria to the Arabidopsis thaliana root microbiome

Arabidopsis thaliana has a diverse but consistent root microbiome, recruited in part by the release of fixed carbon in root exudates. Here we focussed on the recruitment of Streptomyces bacteria, which are well established plant-growth-promoting rhizobacteria and which have been proposed to be recruited to A. thaliana roots by the release of salicylic acid. We generated high quality genome sequences for eight Streptomyces endophyte strains and showed that although some strains do enhance plant growth, they are not attracted to, and do not feed on, salicyclic acid. We used 13CO2 DNA-stable isotope probing to determine which bacteria are fed by the plants in the rhizo- and endosphere and found that streptomycetes did not feed on root exudates in vivo, despite the fact that they can use exudate as sole carbon and nitrogen sources in vitro. We confirmed increased root colonisation by streptomycetes in plants that constitutively produce salicylic acid, but these plants exhibited a pleiotropic phenotype of early senescence and weak growth. We propose that streptomycetes are attracted to the rhizosphere by root exudates but can be outcompeted for this food source by more abundant proteobacteria and most likely feed off unlabelled complex organic matter.


April 21, 2020  |  

Whole-Genome Sequences of Four Indian Isolates of Azospirillum brasilense.

Azospirillum brasilense is used worldwide as a plant growth-promoting inoculant for agricultural crops. To understand how the genomes of Indian strains of A. brasilense compare with their South American counterparts, we determined the whole-genome sequences of four strains of A. brasilense isolated from the rhizosphere of grasses from India.Copyright © 2019 Singh et al.


April 21, 2020  |  

Plantibacter flavus, Curtobacterium herbarum, Paenibacillus taichungensis, and Rhizobium selenitireducens Endophytes Provide Host-Specific Growth Promotion of Arabidopsis thaliana, Basil, Lettuce, and Bok Choy Plants.

A collection of bacterial endophytes isolated from stem tissues of plants growing in soils highly contaminated with petroleum hydrocarbons were screened for plant growth-promoting capabilities. Twenty-seven endophytic isolates significantly improved the growth of Arabidopsis thaliana plants in comparison to that of uninoculated control plants. The five most beneficial isolates, one strain each of Curtobacterium herbarum, Paenibacillus taichungensis, and Rhizobium selenitireducens and two strains of Plantibacter flavus were further examined for growth promotion in Arabidopsis, lettuce, basil, and bok choy plants. Host-specific plant growth promotion was observed when plants were inoculated with the five bacterial strains. P. flavus strain M251 increased the total biomass and total root length of Arabidopsis plants by 4.7 and 5.8 times, respectively, over that of control plants and improved lettuce and basil root growth, while P. flavus strain M259 promoted Arabidopsis shoot and root growth, lettuce and basil root growth, and bok choy shoot growth. A genome comparison between P. flavus strains M251 and M259 showed that both genomes contain up to 70 actinobacterial putative plant-associated genes and genes involved in known plant-beneficial pathways, such as those for auxin and cytokinin biosynthesis and 1-aminocyclopropane-1-carboxylate deaminase production. This study provides evidence of direct plant growth promotion by Plantibacter flavusIMPORTANCE The discovery of new plant growth-promoting bacteria is necessary for the continued development of biofertilizers, which are environmentally friendly and cost-efficient alternatives to conventional chemical fertilizers. Biofertilizer effects on plant growth can be inconsistent due to the complexity of plant-microbe interactions, as the same bacteria can be beneficial to the growth of some plant species and neutral or detrimental to others. We examined a set of bacterial endophytes isolated from plants growing in a unique petroleum-contaminated environment to discover plant growth-promoting bacteria. We show that strains of Plantibacter flavus exhibit strain-specific plant growth-promoting effects on four different plant species.Copyright © 2019 American Society for Microbiology.


April 21, 2020  |  

Complete Genome Sequence of Achromobacter spanius UQ283, a Soilborne Isolate Exhibiting Plant Growth-Promoting Properties.

Achromobacter spanius UQ283 is a soilborne bacterium found to exhibit plant growth-promoting and disease-suppressing attributes in several plant species. Accordingly, we used long-read sequencing to determine its complete genome sequence. The assembled genome will aid in understanding the multifaceted interactions between plant growth-promoting rhizobacteria, pathogens, and plants. Copyright © 2019 Wass et al.


April 21, 2020  |  

Complete Genome Sequencing of Bacillus velezensis WRN014, and Comparison with Genome Sequences of other Bacillus velezensis Strains.

Bacillus velezensis strain WRN014 was isolated from banana fields in Hainan, China. Bacillus velezensis is an important member of the plant growth-promoting rhizobacteria (PGPR) which can enhance plant growth and control soil-borne disease. The complete genome of Bacillus velezensis WRN014 was sequenced by combining Illumina Hiseq 2500 system and Pacific Biosciences SMRT high-throughput sequencing technologies. Then, the genome of Bacillus velezensis WRN014, together with 45 other completed genome sequences of the Bacillus velezensis strains, were comparatively studied. The genome of Bacillus velezensis WRN014 was 4,063,541bp in length and contained 4,062 coding sequences, 9 genomic islands and 13 gene clusters. The results of comparative genomic analysis provide evidence that (i) The 46 Bacillus velezensis strains formed 2 obviously closely related clades in phylogenetic trees. (ii) The pangenome in this study is open and is increasing with the addition of new sequenced genomes. (iii) Analysis of single nucleotide polymorphisms (SNPs) revealed local diversification of the 46 Bacillus velezensis genomes. Surprisingly, SNPs were not evenly distributed throughout the whole genome. (iv) Analysis of gene clusters revealed that rich gene clusters spread over Bacillus velezensis strains and some gene clusters are conserved in different strains. This study reveals that the strain WRN014 and other Bacillus velezensis strains have potential to be used as PGPR and biopesticide.


April 21, 2020  |  

Genomic and Functional Characterization of the Endophytic Bacillus subtilis 7PJ-16 Strain, a Potential Biocontrol Agent of Mulberry Fruit Sclerotiniose.

Bacillus sp. 7PJ-16, an endophytic bacterium isolated from a healthy mulberry stem and previously identified as Bacillus tequilensis 7PJ-16, exhibits strong antifungal activity and has the capacity to promote plant growth. This strain was studied for its effectiveness as a biocontrol agent to reduce mulberry fruit sclerotiniose in the field and as a growth-promoting agent for mulberry in the greenhouse. In field studies, the cell suspension and supernatant of strain 7PJ-16 exhibited biocontrol efficacy and the lowest disease incidence was reduced down to only 0.80%. In greenhouse experiments, the cell suspension (1.0?×?106 and 1.0?×?105 CFU/mL) and the cell-free supernatant (100-fold and 1000-fold dilution) stimulated mulberry seed germination and promoted mulberry seedling growth. In addition, to accurately identify the 7PJ-16 strain and further explore the mechanisms of its antifungal and growth-promoting properties, the complete genome of this strain was sequenced and annotated. The 7PJ-16 genome is comprised of two circular plasmids and a 4,209,045-bp circular chromosome, containing 4492 protein-coding genes and 116 RNA genes. This strain was ultimately designed as Bacillus subtilis based on core genome sequence analyses using a phylogenomic approach. In this genome, we identified a series of gene clusters that function in the synthesis of non-ribosomal peptides (surfactin, fengycin, bacillibactin, and bacilysin) as well as the ribosome-dependent synthesis of tasA and bacteriocins (subtilin, subtilosin A), which are responsible for the biosynthesis of numerous antimicrobial metabolites. Additionally, several genes with function that promote plant growth, such as indole-3-acetic acid biosynthesis, the production of volatile substances, and siderophores synthesis, were also identified. The information described in this study has established a good foundation for understanding the beneficial interactions between endophytes and host plants, and facilitates the further application of B. subtilis 7PJ-16 as an agricultural biofertilizer and biocontrol agent.


April 21, 2020  |  

The Isolation and Characterization of Kronos, a Novel Caulobacter Rhizosphere Phage that is Similar to Lambdoid Phages.

Despite their ubiquity, relatively few bacteriophages have been characterized. Here, we set out to explore Caulobacter bacteriophages (caulophages) in the rhizosphere and characterized Kronos, the first caulophage isolated from the rhizosphere. Kronos is a member of the Siphoviridae family since it has a long flexible tail. In addition, an analysis of the Kronos genome indicated that many of the predicted proteins were distantly related to those of bacteriophages in the lambdoid family. Consistent with this observation, we were able to demonstrate the presence of cos sites that are similar to those found at the ends of lambdoid phage genomes. Moreover, Kronos displayed a relatively rare head and tail morphology compared to other caulophages but was similar to that of the lambdoid phages. Taken together, these data indicate that Kronos is distantly related to lambdoid phages and may represent a new Siphoviridae genus.


April 21, 2020  |  

Diversity of phytobeneficial traits revealed by whole-genome analysis of worldwide-isolated phenazine-producing Pseudomonas spp.

Plant-beneficial Pseudomonas spp. competitively colonize the rhizosphere and display plant-growth promotion and/or disease-suppression activities. Some strains within the P. fluorescens species complex produce phenazine derivatives, such as phenazine-1-carboxylic acid. These antimicrobial compounds are broadly inhibitory to numerous soil-dwelling plant pathogens and play a role in the ecological competence of phenazine-producing Pseudomonas spp. We assembled a collection encompassing 63 strains representative of the worldwide diversity of plant-beneficial phenazine-producing Pseudomonas spp. In this study, we report the sequencing of 58 complete genomes using PacBio RS II sequencing technology. Distributed among four subgroups within the P. fluorescens species complex, the diversity of our collection is reflected by the large pangenome which accounts for 25 413 protein-coding genes. We identified genes and clusters encoding for numerous phytobeneficial traits, including antibiotics, siderophores and cyclic lipopeptides biosynthesis, some of which were previously unknown in these microorganisms. Finally, we gained insight into the evolutionary history of the phenazine biosynthetic operon. Given its diverse genomic context, it is likely that this operon was relocated several times during Pseudomonas evolution. Our findings acknowledge the tremendous diversity of plant-beneficial phenazine-producing Pseudomonas spp., paving the way for comparative analyses to identify new genetic determinants involved in biocontrol, plant-growth promotion and rhizosphere competence. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.