June 1, 2021  |  

MinHash for overlapping and assembly

2015 SMRT Informatics Developers Conference Presentation Slides: Sergey Koren of National Biodefense Analysis and Countermeasures Center (NBACC) provided an overview of the MHAP algorithm, a method for assembling large genomes with Sing-Molecule Sequencing and locality sensitive hashing. Using MHAP, Koren produced a human assembly (CHM1) with a contig N50 of >23 Mb.


June 1, 2021  |  

The MHC Diversity in Africa Project (MDAP) pilot – 125 African high resolution HLA types from 5 populations

The major histocompatibility complex (MHC), or human leukocyte antigen (HLA) in humans, is a highly diverse gene family with a key role in immune response to disease; and has been implicated in auto-immune disease, cancer, infectious disease susceptibility, and vaccine response. It has clinical importance in the field of solid organ and bone marrow transplantation, where donors and recipient matching of HLA types is key to transplanted organ outcomes. The Sanger based typing (SBT) methods currently used in clinical practice do not capture the full diversity across this region, and require specific reference sequences to deconvolute ambiguity in HLA types. However, reference databases are based largely on European populations, and the full extent of diversity in Africa remains poorly understood. Here, we present the first systematic characterisation of HLA diversity within Africa in the pilot phase of the MHC Diversity in Africa Project, together with an evaluation of methods to carry out scalable cost-effective, as well as reliable, typing of this region in African populations.To sample a geographically representative panel of African populations we obtained 125 samples, 25 each from the Zulu (South Africa), Igbo (Nigeria), Kalenjin (Kenya), Moroccan and Ashanti (Ghana) groups. For methods validation we included two controls from the International Histocompatibility Working Group (IHWG) collection with known typing information. Sanger typing and Illumina HiSeq X sequencing of these samples indicated potentially novel Class I and Class II alleles; however, we found poor correlation between HiSeq X sequencing and SBT for both classes. Long Range PCR and high resolution PacBio RS-II typing of 4 of these samples identified 7 novel Class II alleles, highlighting the high levels of diversity in these populations, and the need for long read sequencing approaches to characterise this comprehensively. We have now expanded this approach to the entire pilot set of 125 samples. We present these confirmed types and discuss a workflow for scaling this to 5000 individuals across Africa.The large number of new alleles identified in our pilot suggests the high level of African HLA diversity and the utility of high resolution methods. The MDAP project will provide a framework for accurate HLA typing, in addition to providing an invaluable resource for imputation in GWAS, boosting power to identify and resolve HLA disease associations.


June 1, 2021  |  

Assessing diversity and clonal variation of Australia’s grapevine germplasm: Curating the FALCON-Unzip Chardonnay de novo genome assembly

Until recently only two genome assemblies were publicly available for grapevine—both Vitis vinifera L. Cv. Pinot Noir (PN). The best available PN genome assembly (Jaillon et al. 2007) is not representative of the genome complexity that is typical of wine-grape cultivars in the field and it is highly fragmented. To assess the genetic complexities of Chardonnay grapevine, assembly of a new de novo reference genome was needed. Here we describe a draft assembly using PacBio SMRT Sequencing data and PacBio’s new phased diploid genome assembler FALCON-Unzip (Chin et al. 2016).


April 21, 2020  |  

Chromosome-length haplotigs for yak and cattle from trio binning assembly of an F1 hybrid

Background Assemblies of diploid genomes are generally unphased, pseudo-haploid representations that do not correctly reconstruct the two parental haplotypes present in the individual sequenced. Instead, the assembly alternates between parental haplotypes and may contain duplications in regions where the parental haplotypes are sufficiently different. Trio binning is an approach to genome assembly that uses short reads from both parents to classify long reads from the offspring according to maternal or paternal haplotype origin, and is thus helped rather than impeded by heterozygosity. Using this approach, it is possible to derive two assemblies from an individual, accurately representing both parental contributions in their entirety with higher continuity and accuracy than is possible with other methods.Results We used trio binning to assemble reference genomes for two species from a single individual using an interspecies cross of yak (Bos grunniens) and cattle (Bos taurus). The high heterozygosity inherent to interspecies hybrids allowed us to confidently assign >99% of long reads from the F1 offspring to parental bins using unique k-mers from parental short reads. Both the maternal (yak) and paternal (cattle) assemblies contain over one third of the acrocentric chromosomes, including the two largest chromosomes, in single haplotigs.Conclusions These haplotigs are the first vertebrate chromosome arms to be assembled gap-free and fully phased, and the first time assemblies for two species have been created from a single individual. Both assemblies are the most continuous currently available for non-model vertebrates.MbmegabaseskbkilobasesMYAmillions of years agoMHCmajor histocompatibility complexSMRTsingle molecule real time


April 21, 2020  |  

Evolution of a 72-kb cointegrant, conjugative multiresistance plasmid from early community-associated methicillin-resistant Staphylococcus aureus isolates.

Horizontal transfer of plasmids encoding antimicrobial-resistance and virulence determinants has been instrumental in Staphylococcus aureus evolution, including the emergence of community-associated methicillin-resistant S. aureus (CA-MRSA). In the early 1990s the first CA-MRSA isolated in Western Australia (WA), WA-5, encoded cadmium, tetracycline and penicillin-resistance genes on plasmid pWBG753 (~30 kb). WA-5 and pWBG753 appeared only briefly in WA, however, fusidic-acid-resistance plasmids related to pWBG753 were also present in the first European CA-MRSA at the time. Here we characterized a 72-kb conjugative plasmid pWBG731 present in multiresistant WA-5-like clones from the same period. pWBG731 was a cointegrant formed from pWBG753 and a pWBG749-family conjugative plasmid. pWBG731 carried mupirocin, trimethoprim, cadmium and penicillin-resistance genes. The stepwise evolution of pWBG731 likely occurred through the combined actions of IS257, IS257-dependent miniature inverted-repeat transposable elements (MITEs) and the BinL resolution system of the ß-lactamase transposon Tn552 An evolutionary intermediate ~42-kb non-conjugative plasmid pWBG715, possessed the same resistance genes as pWBG731 but retained an integrated copy of the small tetracycline-resistance plasmid pT181. IS257 likely facilitated replacement of pT181 with conjugation genes on pWBG731, thus enabling autonomous transfer. Like conjugative plasmid pWBG749, pWBG731 also mobilized non-conjugative plasmids carrying oriT mimics. It seems likely that pWBG731 represents the product of multiple recombination events between the WA-5 pWBG753 plasmid and other mobile genetic elements present in indigenous CA-MSSA. The molecular evolution of pWBG731 saliently illustrates how diverse mobile genetic elements can together facilitate rapid accrual and horizontal dissemination of multiresistance in S. aureus CA-MRSA.Copyright © 2019 American Society for Microbiology.


April 21, 2020  |  

A robust benchmark for germline structural variant detection

New technologies and analysis methods are enabling genomic structural variants (SVs) to be detected with ever-increasing accuracy, resolution, and comprehensiveness. Translating these methods to routine research and clinical practice requires robust benchmark sets. We developed the first benchmark set for identification of both false negative and false positive germline SVs, which complements recent efforts emphasizing increasingly comprehensive characterization of SVs. To create this benchmark for a broadly consented son in a Personal Genome Project trio with broadly available cells and DNA, the Genome in a Bottle (GIAB) Consortium integrated 19 sequence-resolved variant calling methods, both alignment- and de novo assembly-based, from short-, linked-, and long-read sequencing, as well as optical and electronic mapping. The final benchmark set contains 12745 isolated, sequence-resolved insertion and deletion calls =50 base pairs (bp) discovered by at least 2 technologies or 5 callsets, genotyped as heterozygous or homozygous variants by long reads. The Tier 1 benchmark regions, for which any extra calls are putative false positives, cover 2.66 Gbp and 9641 SVs supported by at least one diploid assembly. Support for SVs was assessed using svviz with short-, linked-, and long-read sequence data. In general, there was strong support from multiple technologies for the benchmark SVs, with 90 % of the Tier 1 SVs having support in reads from more than one technology. The Mendelian genotype error rate was 0.3 %, and genotype concordance with manual curation was >98.7 %. We demonstrate the utility of the benchmark set by showing it reliably identifies both false negatives and false positives in high-quality SV callsets from short-, linked-, and long-read sequencing and optical mapping.


April 21, 2020  |  

Early emergence of mcr-1-positive Enterobacteriaceae in gulls from Spain and Portugal.

We tested extended-spectrum ß-lactamase producing bacteria from wild gulls (Larus spp.) sampled in 2009 for the presence of mcr-1. We report the detection of mcr-1 and describe genome characteristics of four Escherichia coli and one Klebsiella pneumoniae isolate from Spain and Portugal that also exhibited colistin resistance. Results represent the earliest evidence for colistin-resistant bacteria in European wildlife.Published 2019. This article is a U.S. Government work and is in the public domain in the USA.


April 21, 2020  |  

Genome sequence analysis of 91 Salmonella Enteritidis isolates from mice caught on poultry farms in the mid 1990s.

A total of 91 draft genome sequences were used to analyze isolates of Salmonella enterica serovar Enteritidis obtained from feral mice caught on poultry farms in Pennsylvania. One objective was to find mutations disrupting open reading frames (ORFs) and another was to determine if ORF-disruptive mutations were present in isolates obtained from other sources. A total of 83 mice were obtained between 1995-1998. Isolates separated into two genomic clades and 12 subgroups due to 742 mutations. Nineteen ORF-disruptive mutations were found, and in addition, bigA had exceptional heterogeneity requiring additional evaluation. The TRAMS algorithm detected only 6 ORF disruptions. The sefD mutation was the most frequently encountered mutation and it was prevalent in human, poultry, environmental and mouse isolates. These results confirm previous assessments of the mouse as a rich source of Salmonella enterica serovar Enteritidis that varies in genotype and phenotype. Copyright © 2019. Published by Elsevier Inc.


April 21, 2020  |  

Large-scale ruminant genome sequencing provides insights into their evolution and distinct traits.

The ruminants are one of the most successful mammalian lineages, exhibiting morphological and habitat diversity and containing several key livestock species. To better understand their evolution, we generated and analyzed de novo assembled genomes of 44 ruminant species, representing all six Ruminantia families. We used these genomes to create a time-calibrated phylogeny to resolve topological controversies, overcoming the challenges of incomplete lineage sorting. Population dynamic analyses show that population declines commenced between 100,000 and 50,000 years ago, which is concomitant with expansion in human populations. We also reveal genes and regulatory elements that possibly contribute to the evolution of the digestive system, cranial appendages, immune system, metabolism, body size, cursorial locomotion, and dentition of the ruminants. Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.


April 21, 2020  |  

A microbial factory for defensive kahalalides in a tripartite marine symbiosis.

Chemical defense against predators is widespread in natural ecosystems. Occasionally, taxonomically distant organisms share the same defense chemical. Here, we describe an unusual tripartite marine symbiosis, in which an intracellular bacterial symbiont (“Candidatus Endobryopsis kahalalidefaciens”) uses a diverse array of biosynthetic enzymes to convert simple substrates into a library of complex molecules (the kahalalides) for chemical defense of the host, the alga Bryopsis sp., against predation. The kahalalides are subsequently hijacked by a third partner, the herbivorous mollusk Elysia rufescens, and employed similarly for defense. “Ca E. kahalalidefaciens” has lost many essential traits for free living and acts as a factory for kahalalide production. This interaction between a bacterium, an alga, and an animal highlights the importance of chemical defense in the evolution of complex symbioses.Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.


April 21, 2020  |  

The replication-competent HIV-1 latent reservoir is primarily established near the time of therapy initiation.

Although antiretroviral therapy (ART) is highly effective at suppressing HIV-1 replication, the virus persists as a latent reservoir in resting CD4+ T cells during therapy. This reservoir forms even when ART is initiated early after infection, but the dynamics of its formation are largely unknown. The viral reservoirs of individuals who initiate ART during chronic infection are generally larger and genetically more diverse than those of individuals who initiate therapy during acute infection, consistent with the hypothesis that the reservoir is formed continuously throughout untreated infection. To determine when viruses enter the latent reservoir, we compared sequences of replication-competent viruses from resting peripheral CD4+ T cells from nine HIV-positive women on therapy to viral sequences circulating in blood collected longitudinally before therapy. We found that, on average, 71% of the unique viruses induced from the post-therapy latent reservoir were most genetically similar to viruses replicating just before ART initiation. This proportion is far greater than would be expected if the reservoir formed continuously and was always long lived. We conclude that ART alters the host environment in a way that allows the formation or stabilization of most of the long-lived latent HIV-1 reservoir, which points to new strategies targeted at limiting the formation of the reservoir around the time of therapy initiation.Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.


April 21, 2020  |  

Impact of antibiotic treatment and host innate immune pressure on enterococcal adaptation in the human bloodstream.

Multidrug-resistant enterococcal strains emerged in the early 1980s and are now among the leading causes of drug-resistant bacterial infection worldwide. We used functional genomics to study an early bacterial outbreak in patients in a Wisconsin hospital between 1984 and 1988 that was caused by multidrug-resistant Enterococcus faecalis The goal was to determine how a clonal lineage of E. faecalis became adapted to growth and survival in the human bloodstream. Genome sequence analysis revealed a progression of increasingly fixed mutations and repeated independent occurrences of mutations in a relatively small set of genes. Repeated independent mutations suggested selection within the host during the course of infection in response to pressures such as host immunity and antibiotic treatment. We observed repeated independent mutations in a small number of loci, including a little studied polysaccharide utilization pathway and the cydABDC locus. Functional studies showed that mutating these loci rendered E. faecalis better able to withstand antibiotic pressure and innate immune defenses in the human bloodstream. We also observed a shift in mutation pattern that corresponded to the introduction of carbapenem antibiotics in 1987. This work identifies pathways that allow enterococci to survive the transition from the human gut into the bloodstream, enabling them to cause severe bacteremia associated with high mortality. Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.


April 21, 2020  |  

The ADEP Biosynthetic Gene Cluster in Streptomyces hawaiiensis NRRL 15010 Reveals an Accessory clpP Gene as a Novel Antibiotic Resistance Factor.

The increasing threat posed by multiresistant bacterial pathogens necessitates the discovery of novel antibacterials with unprecedented modes of action. ADEP1, a natural compound produced by Streptomyces hawaiiensis NRRL 15010, is the prototype for a new class of acyldepsipeptide (ADEP) antibiotics. ADEP antibiotics deregulate the proteolytic core ClpP of the bacterial caseinolytic protease, thereby exhibiting potent antibacterial activity against Gram-positive bacteria, including multiresistant pathogens. ADEP1 and derivatives, here collectively called ADEP, have been previously investigated for their antibiotic potency against different species, structure-activity relationship, and mechanism of action; however, knowledge on the biosynthesis of the natural compound and producer self-resistance have remained elusive. In this study, we identified and analyzed the ADEP biosynthetic gene cluster in S. hawaiiensis NRRL 15010, which comprises two NRPSs, genes necessary for the biosynthesis of (4S,2R)-4-methylproline, and a type II polyketide synthase (PKS) for the assembly of highly reduced polyenes. While no resistance factor could be identified within the gene cluster itself, we discovered an additional clpP homologous gene (named clpPADEP) located further downstream of the biosynthetic genes, separated from the biosynthetic gene cluster by several transposable elements. Heterologous expression of ClpPADEP in three ADEP-sensitive Streptomyces species proved its role in conferring ADEP resistance, thereby revealing a novel type of antibiotic resistance determinant.IMPORTANCE Antibiotic acyldepsipeptides (ADEPs) represent a promising new class of potent antibiotics and, at the same time, are valuable tools to study the molecular functioning of their target, ClpP, the proteolytic core of the bacterial caseinolytic protease. Here, we present a straightforward purification procedure for ADEP1 that yields substantial amounts of the pure compound in a time- and cost-efficient manner, which is a prerequisite to conveniently study the antimicrobial effects of ADEP and the operating mode of bacterial ClpP machineries in diverse bacteria. Identification and characterization of the ADEP biosynthetic gene cluster in Streptomyces hawaiiensis NRRL 15010 enables future bioinformatics screenings for similar gene clusters and/or subclusters to find novel natural compounds with specific substructures. Most strikingly, we identified a cluster-associated clpP homolog (named clpPADEP) as an ADEP resistance gene. ClpPADEP constitutes a novel bacterial resistance factor that alone is necessary and sufficient to confer high-level ADEP resistance to Streptomyces across species.Copyright © 2019 American Society for Microbiology.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.