fbpx
X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Sunday, September 22, 2019

A statistical method for observing personal diploid methylomes and transcriptomes with Single-Molecule Real-Time sequencing.

We address the problem of observing personal diploid methylomes, CpG methylome pairs of homologous chromosomes that are distinguishable with respect to phased heterozygous variants (PHVs), which is challenging due to scarcity of PHVs in personal genomes. Single molecule real-time (SMRT) sequencing is promising as it outputs long reads with CpG methylation information, but a serious concern is whether reliable PHVs are available in erroneous SMRT reads with an error rate of ~15%. To overcome the issue, we propose a statistical model that reduces the error rate of phasing CpG site to 1%, thereby calling CpG hypomethylation in each haplotype with…

Read More »

Sunday, September 22, 2019

Parliament2: Fast structural variant calling using optimized combinations of callers

Here we present Parliament2: a structural variant caller which combines multiple best-in-class structural variant callers to create a highly accurate callset. This captures more events than the individual callers achieve independently. Parliament2 uses a call-overlap-genotype approach that is highly extensible to new methods and presents users the choice to run some or all of Breakdancer, Breakseq, CNVnator, Delly, Lumpy, and Manta to run. Parliament2 applies an additional parallelization framework to speed certain callers and executes these in parallel, taking advantage of the different resource requirements to complete structural variant calling much faster than running the programs individually. Parliament2 is available…

Read More »

Sunday, September 22, 2019

Variation graph toolkit improves read mapping by representing genetic variation in the reference.

Reference genomes guide our interpretation of DNA sequence data. However, conventional linear references represent only one version of each locus, ignoring variation in the population. Poor representation of an individual’s genome sequence impacts read mapping and introduces bias. Variation graphs are bidirected DNA sequence graphs that compactly represent genetic variation across a population, including large-scale structural variation such as inversions and duplications. Previous graph genome software implementations have been limited by scalability or topological constraints. Here we present vg, a toolkit of computational methods for creating, manipulating, and using these structures as references at the scale of the human genome.…

Read More »

Sunday, September 22, 2019

Targeted genotyping of variable number tandem repeats with adVNTR.

Whole-genome sequencing is increasingly used to identify Mendelian variants in clinical pipelines. These pipelines focus on single-nucleotide variants (SNVs) and also structural variants, while ignoring more complex repeat sequence variants. Here, we consider the problem of genotyping Variable Number Tandem Repeats (VNTRs), composed of inexact tandem duplications of short (6-100 bp) repeating units. VNTRs span 3% of the human genome, are frequently present in coding regions, and have been implicated in multiple Mendelian disorders. Although existing tools recognize VNTR carrying sequence, genotyping VNTRs (determining repeat unit count and sequence variation) from whole-genome sequencing reads remains challenging. We describe a method,…

Read More »

Sunday, September 22, 2019

TranSurVeyor: an improved database-free algorithm for finding non-reference transpositions in high-throughput sequencing data.

Transpositions transfer DNA segments between different loci within a genome; in particular, when a transposition is found in a sample but not in a reference genome, it is called a non-reference transposition. They are important structural variations that have clinical impact. Transpositions can be called by analyzing second generation high-throughput sequencing datasets. Current methods follow either a database-based or a database-free approach. Database-based methods require a database of transposable elements. Some of them have good specificity; however this approach cannot detect novel transpositions, and it requires a good database of transposable elements, which is not yet available for many species.…

Read More »

Sunday, September 22, 2019

Integrative haplotype estimation with sub-linear complexity

The number of human genomes being genotyped or sequenced increases exponentially and efficient haplotype estimation methods able to handle this amount of data are now required. Here, we present a new method, SHAPEIT4, which substantially improves upon other methods to process large genotype and high coverage sequencing datasets. It notably exhibits sub-linear scaling with sample size, provides highly accurate haplotypes and allows integrating external phasing information such as large reference panels of haplotypes, collections of pre-phased variants and long sequencing reads. We provide SHAPET4 in an open source format on https://odelaneau.github.io/shapeit4/ and demonstrate its performance in terms of accuracy and…

Read More »

Sunday, September 22, 2019

CompStor Novos: a low cost yet fast assembly-based variant calling for personal genomes

Application of assembly methods for personal genome analysis from next generation sequencing data has been limited by the requirement for an expensive supercomputer hardware or long computation times when using ordinary resources. We describe CompStor Novos, achieving supercomputer-class performance in de novo assembly computation time on standard server hardware, based on a tiered-memory algorithm. Run on commercial off-the-shelf servers, Novos assembly is more precise and 10-20 times faster than that of existing assembly algorithms. Furthermore, we integrated Novos into a variant calling pipeline and demonstrate that both compute times and precision of calling point variants and indels compare well with…

Read More »

1 2 3 4

Subscribe for blog updates:

Archives