PacBio 2013 User Group Meeting Presentation Slides: Lisbeth Guethlein from Stanford University School of Medicine looked at highly repetitive and variable immune regions of the orangutan genome. Guethlein reported that “PacBio managed to accomplish in a week what I have been working on for a couple years” (with Sanger sequencing), and the results were concordant. “Long story short, I was a happy customer.”
Colorectal cancer (CRC) represents one of the most prevalent and lethal malignant neoplasms and every individual of age 50 and above should undergo regular CRC screening. Currently, the most effective procedure to detect adenomas, the precursors to CRC, is colonoscopy, which reduces CRC incidence by 80%. However, it is an invasive approach that is unpleasant for the patient, expensive, and poses some risk of complications such as colon perforation. A non-invasive screening approach with detection rates comparable to those of colonoscopy has not yet been established. The current study applies Pacific Biosciences third generation, single molecule sequencing to the inspection…
The Genome in a Bottle Consortium is developing the reference materials, reference methods , and reference data n
The human immunoglobulin heavy chain locus (IGH) remains among the most understudied regions of the human genome. Recent efforts have shown that haplotype diversity within IGH is elevated and exhibits population specific patterns; for example, our re-sequencing of the locus from only a single chromosome uncovered >100 Kb of novel sequence, including descriptions of six novel alleles, and four previously unmapped genes. Historically, this complex locus architecture has hindered the characterization of IGH germline single nucleotide, copy number, and structural variants (SNVs; CNVs; SVs), and as a result, there remains little known about the role of IGH polymorphisms in inter-individual…
Targeted sequencing employing PCR amplification is a fundamental approach to studying human genetic disease. PacBio’s Sequel System and supporting products provide an end-to-end solution for amplicon sequencing, offering better performance to Sanger technology in accuracy, read length, throughput, and breadth of informative data. Sample multiplexing is supported with three barcoding options providing the flexibility to incorporate unique sample identifiers during target amplification or library preparation. Multiplexing is key to realizing the full capacity of the 1 million individual reactions per Sequel SMRT Cell. Two analysis workflows that can generate high-accuracy results support a wide range of amplicon sizes in two…
Structural variants (genomic differences =50 base pairs) contribute to the evolution of traits and disease. Most structural variants (SVs) are too small to detect with array comparative genomic hybridization and too large to reliably discover with short-read DNA sequencing.
Targeted sequencing with Sanger as well as short read based high throughput sequencing methods is standard practice in clinical genetic testing. However, many applications beyond SNP detection have remained somewhat obstructed due to technological challenges. With the advent of long reads and high consensus accuracy, SMRT Sequencing overcomes many of the technical hurdles faced by Sanger and NGS approaches, opening a broad range of untapped clinical sequencing opportunities. Flexible multiplexing options, highly adaptable sample preparation method and newly improved two well-developed analysis methods that generate highly-accurate sequencing results, make SMRT Sequencing an adept method for clinical grade targeted sequencing. The…
Past large scale cancer genome sequencing efforts, including The Cancer Genome Atlas and the International Cancer Genome Consortium, have utilized short-read sequencing, which is well-suited for detecting single nucleotide variants (SNVs) but far less reliable for detecting variants larger than 20 base pairs, including insertions, deletions, duplications, inversions and translocations. Recent same-sample comparisons of short- and long-read human reference genome data have revealed that short-read resequencing typically uncovers only ~4,000 structural variants (SVs, =50 bp) per genome and is biased towards deletions, whereas sequencing with PacBio long-reads consistently finds ~20,000 SVs, evenly balanced between insertions and deletions. This discovery has…
Genomics studies have shown that the insertions, deletions, duplications, translocations, inversions, and tandem repeat expansions in the structural variant (SV) size range (>50 bp) contribute to the evolution of traits and often have significant associations with agronomically important phenotypes. However, most SVs are too small to detect with array comparative genomic hybridization and too large to reliably discover with short-read DNA sequencing. While de novo assembly is the most comprehensive way to identify variants in a genome, recent studies in human genomes show that PacBio SMRT Sequencing sensitively detects structural variants at low coverage. Here we present SV characterization in…
Introduction: Long-read PacBio SMRT Sequencing has been applied successfully to assemble genomes and detect structural variants. However, due to high raw read error rates of 10-15%, it has remained difficult to call small variants from long reads. Recent improvements in library preparation, sequencing chemistry, and instrument yield have increased length, accuracy, and throughput of PacBio Circular Consensus (CCS) reads, resulting in 10-20 kb “HiFi” reads with mean read quality above 99%. Materials and Methods: We sequenced 11 kb size-selected libraries from the Genome in a Bottle (GIAB) human reference samples HG001, HG002, and HG005 to approximately 30-fold coverage on the…
To comprehensively detect large variants in human genomes, we have extended pbsv – a structural variant caller for long reads – to call copy-number variants (CNVs) from read-clipping and read-depth signatures. In human germline benchmark samples, we detect more than 300 CNVs spanning around 10 Mb, and we call hundreds of additional events in re-arranged cancer samples. Long-read sequencing of diverse humans has revealed more than 20,000 insertion, deletion, and inversion structural variants spanning more than 12 Mb in a typical human genome. Most of these variants are too large to detect with short reads and too small for array…
Long-read sequencing of diverse humans has revealed more than 20,000 insertion, deletion, and inversion structural variants spanning more than 12 Mb in a healthy human genome. Most of these variants are too large to detect with short reads and too small for array comparative genome hybridization (aCGH). While the standard approaches to calling structural variants with long reads thrive in the 50 bp to 10 kb size range, they tend to miss exactly the large (>50 kb) copy-number variants that are called more readily with aCGH. Standard algorithms rely on reference-based mapping of reads that fully span a variant or…
With highly accurate long reads (HiFi reads) from the Sequel II System, powered by Single Molecule, Real-Time (SMRT) Sequencing technology, you can comprehensively detect variants in a human genome. HiFi reads provide high precision and recall for single nucleotide variants (SNVs), indels, structural variants (SVs), and copy number variants (CNVs), including in difficult-to-map repetitive regions.
Discover how HiFi reads enable every aspect of viral research, from understanding viral genomes to the host immune response.
As the foundation for scientific discoveries in genetic diversity, sequencing data must be accurate and complete. With highly accurate long-read sequencing, or HiFi sequencing, there is no longer a compromise between read length and accuracy. HiFi sequencing enables some of the highest quality de novo genome assemblies available today as well as comprehensive variant detection in human samples. PacBio HiFi libraries constructed using our standard library workflows require at least 3 µg of DNA input per 1 Gb of genome length, or ~10 µg for a human sample. For some samples it is not possible to extract this amount of…