September 22, 2019  |  

Single Molecule Sequencing: new outlooks for solving genome assembly and transcripts identification challenges

In this review, we introduce a novel sequencing technology, named Single Molecule Real Time sequencing. Also called Single Molecule Sequencing, as it do not requires any amplification, this new technology is able to pro- duce much longer reads than previous NGS technologies such as Illumina. This read size improvements, which can reach 150 fold, will solve many challenges caused by the actual NGS technologies. Short NGS reads, reach- ing a maximum size of 300 bp, make it hard to reconstitute a whole genome and are always leading to fragmented genome assembly. It is also difficult to correctly infer transcript quantification and identification when there is a high isoforms diversity. Despite their higher error rate, long reads have shown very promising result concerning these actual issues. We show that longer reads can produce less fragmented assembly, with a better quality, but also sequence from start to end mRNA, making it much more easier to infer correct transcript quantification, and even allow new intron structure and so new isoforms discovery.

September 22, 2019  |  

ALE: a generic assembly likelihood evaluation framework for assessing the accuracy of genome and metagenome assemblies.

Researchers need general purpose methods for objectively evaluating the accuracy of single and metagenome assemblies and for automatically detecting any errors they may contain. Current methods do not fully meet this need because they require a reference, only consider one of the many aspects of assembly quality or lack statistical justification, and none are designed to evaluate metagenome assemblies.In this article, we present an Assembly Likelihood Evaluation (ALE) framework that overcomes these limitations, systematically evaluating the accuracy of an assembly in a reference-independent manner using rigorous statistical methods. This framework is comprehensive, and integrates read quality, mate pair orientation and insert length (for paired-end reads), sequencing coverage, read alignment and k-mer frequency. ALE pinpoints synthetic errors in both single and metagenomic assemblies, including single-base errors, insertions/deletions, genome rearrangements and chimeric assemblies presented in metagenomes. At the genome level with real-world data, ALE identifies three large misassemblies from the Spirochaeta smaragdinae finished genome, which were all independently validated by Pacific Biosciences sequencing. At the single-base level with Illumina data, ALE recovers 215 of 222 (97%) single nucleotide variants in a training set from a GC-rich Rhodobacter sphaeroides genome. Using real Pacific Biosciences data, ALE identifies 12 of 12 synthetic errors in a Lambda Phage genome, surpassing even Pacific Biosciences’ own variant caller, EviCons. In summary, the ALE framework provides a comprehensive, reference-independent and statistically rigorous measure of single genome and metagenome assembly accuracy, which can be used to identify misassemblies or to optimize the assembly process.ALE is released as open source software under the UoI/NCSA license at It is implemented in C and Python.

September 22, 2019  |  

Normalized long read RNA sequencing in chicken reveals transcriptome complexity similar to human.

Despite the significance of chicken as a model organism, our understanding of the chicken transcriptome is limited compared to human. This issue is common to all non-human vertebrate annotations due to the difficulty in transcript identification from short read RNAseq data. While previous studies have used single molecule long read sequencing for transcript discovery, they did not perform RNA normalization and 5′-cap selection which may have resulted in lower transcriptome coverage and truncated transcript sequences.We sequenced normalised chicken brain and embryo RNA libraries with Pacific Bioscience Iso-Seq. 5′ cap selection was performed on the embryo library to provide methodological comparison. From these Iso-Seq sequencing projects, we have identified 60 k transcripts and 29 k genes within the chicken transcriptome. Of these, more than 20 k are novel lncRNA transcripts with ~3 k classified as sense exonic overlapping lncRNA, which is a class that is underrepresented in many vertebrate annotations. The relative proportion of alternative transcription events revealed striking similarities between the chicken and human transcriptomes while also providing explanations for previously observed genomic differences.Our results indicate that the chicken transcriptome is similar in complexity compared to human, and provide insights into other vertebrate biology. Our methodology demonstrates the potential of Iso-Seq sequencing to rapidly expand our knowledge of transcriptomics.

September 22, 2019  |  

Genome sequences of Chlorella sorokiniana UTEX 1602 and Micractinium conductrix SAG 241.80: implications to maltose excretion by a green alga.

Green algae represent a key segment of the global species capable of photoautotrophic-driven biological carbon fixation. Algae partition fixed-carbon into chemical compounds required for biomass, while diverting excess carbon into internal storage compounds such as starch and lipids or, in certain cases, into targeted extracellular compounds. Two green algae were selected to probe for critical components associated with sugar production and release in a model alga. Chlorella sorokiniana UTEX 1602 – which does not release significant quantities of sugars to the extracellular space – was selected as a control to compare with the maltose-releasing Micractinium conductrix SAG 241.80 – which was originally isolated from an endosymbiotic association with the ciliate Paramecium bursaria. Both strains were subjected to three sequencing approaches to assemble their genomes and annotate their genes. This analysis was further complemented with transcriptional studies during maltose release by M. conductrix SAG 241.80 versus conditions where sugar release is minimal. The annotation revealed that both strains contain homologs for the key components of a putative pathway leading to cytosolic maltose accumulation, while transcriptional studies found few changes in mRNA levels for the genes associated with these established intracellular sugar pathways. A further analysis of potential sugar transporters found multiple homologs for SWEETs and tonoplast sugar transporters. The analysis of transcriptional differences revealed a lesser and more measured global response for M. conductrix SAG 241.80 versus C. sorokiniana UTEX 1602 during conditions resulting in sugar release, providing a catalog of genes that might play a role in extracellular sugar transport.© 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

September 22, 2019  |  

The hardy rubber tree genome provides insights into the evolution of polyisoprene biosynthesis.

Eucommia ulmoides, also called hardy rubber tree, is an economically important tree; however, the lack of its genome sequence restricts the fundamental biological research and applied studies of this plant species. Here, we present a high-quality assembly of its ~1.2-Gb genome (scaffold N50 = 1.88 Mb) with at least 26 723 predicted genes for E. ulmoides, the first sequenced genome of the order Garryales, which was obtained using an integrated strategy combining Illumina sequencing, PacBio sequencing, and BioNano mapping. As a sister taxon to lamiids and campanulids, E. ulmoides underwent an ancient genome triplication shared by core eudicots but no further whole-genome duplication in the last ~125 million years. E. ulmoides exhibits high expression levels and/or gene number expansion for multiple genes involved in stress responses and the biosynthesis of secondary metabolites, which may account for its considerable environmental adaptability. In contrast to the rubber tree (Hevea brasiliensis), which produces cis-polyisoprene, E. ulmoides has evolved to synthesize long-chain trans-polyisoprene via farnesyl diphosphate synthases (FPSs). Moreover, FPS and rubber elongation factor/small rubber particle protein gene families were expanded independently from the H. brasiliensis lineage. These results provide new insights into the biology of E. ulmoides and the origin of polyisoprene biosynthesis. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

September 22, 2019  |  

A transposable element annotation pipeline and expression analysis reveal potentially active elements in the microalga Tisochrysis lutea.

Transposable elements (TEs) are mobile DNA sequences known as drivers of genome evolution. Their impacts have been widely studied in animals, plants and insects, but little is known about them in microalgae. In a previous study, we compared the genetic polymorphisms between strains of the haptophyte microalga Tisochrysis lutea and suggested the involvement of active autonomous TEs in their genome evolution.To identify potentially autonomous TEs, we designed a pipeline named PiRATE (Pipeline to Retrieve and Annotate Transposable Elements, download: ), and conducted an accurate TE annotation on a new genome assembly of T. lutea. PiRATE is composed of detection, classification and annotation steps. Its detection step combines multiple, existing analysis packages representing all major approaches for TE detection and its classification step was optimized for microalgal genomes. The efficiency of the detection and classification steps was evaluated with data on the model species Arabidopsis thaliana. PiRATE detected 81% of the TE families of A. thaliana and correctly classified 75% of them. We applied PiRATE to T. lutea genomic data and established that its genome contains 15.89% Class I and 4.95% Class II TEs. In these, 3.79 and 17.05% correspond to potentially autonomous and non-autonomous TEs, respectively. Annotation data was combined with transcriptomic and proteomic data to identify potentially active autonomous TEs. We identified 17 expressed TE families and, among these, a TIR/Mariner and a TIR/hAT family were able to synthesize their transposase. Both these TE families were among the three highest expressed genes in a previous transcriptomic study and are composed of highly similar copies throughout the genome of T. lutea. This sum of evidence reveals that both these TE families could be capable of transposing or triggering the transposition of potential related MITE elements.This manuscript provides an example of a de novo transposable element annotation of a non-model organism characterized by a fragmented genome assembly and belonging to a poorly studied phylum at genomic level. Integration of multi-omics data enabled the discovery of potential mobile TEs and opens the way for new discoveries on the role of these repeated elements in genomic evolution of microalgae.

September 22, 2019  |  

Long-read sequencing data analysis for yeasts.

Long-read sequencing technologies have become increasingly popular due to their strengths in resolving complex genomic regions. As a leading model organism with small genome size and great biotechnological importance, the budding yeast Saccharomyces cerevisiae has many isolates currently being sequenced with long reads. However, analyzing long-read sequencing data to produce high-quality genome assembly and annotation remains challenging. Here, we present a modular computational framework named long-read sequencing data analysis for yeasts (LRSDAY), the first one-stop solution that streamlines this process. Starting from the raw sequencing reads, LRSDAY can produce chromosome-level genome assembly and comprehensive genome annotation in a highly automated manner with minimal manual intervention, which is not possible using any alternative tool available to date. The annotated genomic features include centromeres, protein-coding genes, tRNAs, transposable elements (TEs), and telomere-associated elements. Although tailored for S. cerevisiae, we designed LRSDAY to be highly modular and customizable, making it adaptable to virtually any eukaryotic organism. When applying LRSDAY to an S. cerevisiae strain, it takes ~41 h to generate a complete and well-annotated genome from ~100× Pacific Biosciences (PacBio) running the basic workflow with four threads. Basic experience working within the Linux command-line environment is recommended for carrying out the analysis using LRSDAY.

September 22, 2019  |  

Improved de novo genome assembly and analysis of the Chinese cucurbit Siraitia grosvenorii, also known as monk fruit or luo-han-guo.

Luo-han-guo (Siraitia grosvenorii), also called monk fruit, is a member of the Cucurbitaceae family. Monk fruit has become an important area for research because of the pharmacological and economic potential of its noncaloric, extremely sweet components (mogrosides). It is also commonly used in traditional Chinese medicine for the treatment of lung congestion, sore throat, and constipation. Recently, a single reference genome became available for monk fruit, assembled from 36.9x genome coverage reads via Illumina sequencing platforms. This genome assembly has a relatively short (34.2 kb) contig N50 length and lacks integrated annotations. These drawbacks make it difficult to use as a reference in assembling transcriptomes and discovering novel functional genes.Here, we offer a new high-quality draft of the S. grosvenorii genome assembled using 31 Gb (~73.8x) long single molecule real time sequencing reads and polished with ~50 Gb Illumina paired-end reads. The final genome assembly is approximately 469.5 Mb, with a contig N50 length of 432,384 bp, representing a 12.6-fold improvement. We further annotated 237.3 Mb of repetitive sequence and 30,565 consensus protein coding genes with combined evidence. Phylogenetic analysis showed that S. grosvenorii diverged from members of the Cucurbitaceae family approximately 40.9 million years ago. With comprehensive transcriptomic analysis and differential expression testing, we identified 4,606 up-regulated genes in the early fruit compared to the leaf, a number of which were linked to metabolic pathways regulating fruit development and ripening.The availability of this new monk fruit genome assembly, as well as the annotations, will facilitate the discovery of new functional genes and the genetic improvement of monk fruit.

September 22, 2019  |  

Comparative genomic analysis of Bacillus thuringiensis reveals molecular adaptation to copper tolerance

Bacillus thuringiensis is a type of Gram positive and rod shaped bacterium that is found in a wide range of habitats. Despite the intensive studies conducted on this bacterium, most of the information available are related to its pathogenic characteristics, with only a limited number of publications mentioning its ability to survive in extreme environments. Recently, a B. thuringiensis MCMY1 strain was successfully isolated from a copper contaminated site in Mamut Copper Mine, Sabah. This study aimed to conduct a comparative genomic analysis by using the genome sequence of MCMY1 strain published in GenBank (PRJNA374601) as a target genome for comparison with other available B. thuringiensis genomes at the GenBank. Whole genome alignment, Fragment all-against-all comparison analysis, phylogenetic reconstruction and specific copper genes comparison were applied to all forty-five B. thuringiensis genomes to reveal the molecular adaptation to copper tolerance. The comparative results indicated that B. thuringiensis MCMY1 strain is closely related to strain Bt407 and strain IS5056. This strain harbors almost all available copper genes annotated from the forty-five B. thuringiensis genomes, except for the gene for Magnesium and cobalt efflux protein (CorC) which plays an indirect role in reducing the oxidative stress that caused by copper and other metal ions. Furthermore, the findings also showed that the Copper resistance gene family, CopABCDZ and its repressor (CsoR) are conserved in almost all sequenced genomes but the presence of the genes for Cytoplasmic copper homeostasis protein (CutC) and CorC across the sample genomes are highly inconsonant. The variation of these genes across the B. thuringiensis genomes suggests that each strain may have adapted to their specific ecological niche. However, further investigations will be need to support this preliminary hypothesis.

September 22, 2019  |  

Optical and physical mapping with local finishing enables megabase-scale resolution of agronomically important regions in the wheat genome.

Numerous scaffold-level sequences for wheat are now being released and, in this context, we report on a strategy for improving the overall assembly to a level comparable to that of the human genome.Using chromosome 7A of wheat as a model, sequence-finished megabase-scale sections of this chromosome were established by combining a new independent assembly using a bacterial artificial chromosome (BAC)-based physical map, BAC pool paired-end sequencing, chromosome-arm-specific mate-pair sequencing and Bionano optical mapping with the International Wheat Genome Sequencing Consortium RefSeq v1.0 sequence and its underlying raw data. The combined assembly results in 18 super-scaffolds across the chromosome. The value of finished genome regions is demonstrated for two approximately 2.5 Mb regions associated with yield and the grain quality phenotype of fructan carbohydrate grain levels. In addition, the 50 Mb centromere region analysis incorporates cytological data highlighting the importance of non-sequence data in the assembly of this complex genome region.Sufficient genome sequence information is shown to now be available for the wheat community to produce sequence-finished releases of each chromosome of the reference genome. The high-level completion identified that an array of seven fructosyl transferase genes underpins grain quality and that yield attributes are affected by five F-box-only-protein-ubiquitin ligase domain and four root-specific lipid transfer domain genes. The completed sequence also includes the centromere.

September 22, 2019  |  

Physiological genomics of dietary adaptation in a marine herbivorous fish

Adopting a new diet is a significant evolutionary change and can profoundly affect an animaltextquoterights physiology, biochemistry, ecology, and its genome. To study this evolutionary transition, we investigated the physiology and genomics of digestion of a derived herbivorous fish, the monkeyface prickleback (Cebidichthys violaceus). We sequenced and assembled its genome and digestive transcriptome and revealed the molecular changes related to important dietary enzymes, finding abundant evidence for adaptation at the molecular level. In this species, two gene families experienced expansion in copy number and adaptive amino acid substitutions. These families, amylase, and bile salt activated lipase, are involved digestion of carbohydrates and lipids, respectively. Both show elevated levels of gene expression and increased enzyme activity. Because carbohydrates are abundant in the pricklebacktextquoterights diet and lipids are rare, these findings suggest that such dietary specialization involves both exploiting abundant resources and scavenging rare ones, especially essential nutrients, like essential fatty acids.

September 21, 2019  |  

Assessing genome assembly quality using the LTR Assembly Index (LAI).

Assembling a plant genome is challenging due to the abundance of repetitive sequences, yet no standard is available to evaluate the assembly of repeat space. LTR retrotransposons (LTR-RTs) are the predominant interspersed repeat that is poorly assembled in draft genomes. Here, we propose a reference-free genome metric called LTR Assembly Index (LAI) that evaluates assembly continuity using LTR-RTs. After correcting for LTR-RT amplification dynamics, we show that LAI is independent of genome size, genomic LTR-RT content, and gene space evaluation metrics (i.e., BUSCO and CEGMA). By comparing genomic sequences produced by various sequencing techniques, we reveal the significant gain of assembly continuity by using long-read-based techniques over short-read-based methods. Moreover, LAI can facilitate iterative assembly improvement with assembler selection and identify low-quality genomic regions. To apply LAI, intact LTR-RTs and total LTR-RTs should contribute at least 0.1% and 5% to the genome size, respectively. The LAI program is freely available on GitHub:

Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.