X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Friday, September 18, 2020

Webinar: Beyond a single reference genome – The advantages of sequencing multiple individuals

Hear how scientists have used PacBio sequencing to develop pangenome collections and to study population genetics of plant and animal species to power their research. Learn about the advantages of sequencing multiple individuals to gain comprehensive views of genetic variation, and understand the speed, cost, and accuracy benefits of using highly accurate long reads (HiFi reads) to sequence your species of interest.

Read More »

Thursday, August 27, 2020

Technical Note: Preparing samples for PacBio whole genome sequencing for de novo assembly – Collection and storage

Single Molecule, Real-Time (SMRT) Sequencing uses the natural process of DNA replication to sequence long fragments of native DNA. As such, starting with high-quality, high molecular weight (HMW) genomic DNA (gDNA) will result in better sequencing performance across difficult to sequence regions of the genome. To obtain the highest quality, long DNA it is important to start with sample types compatible with HMW DNA extraction methods. This technical note is intended to give general guidance on sample collection, preparation, and storage across a range of commonly encountered sample types used for SMRT Sequencing whole genome projects. It is important to…

Read More »

Thursday, August 27, 2020

Case Study: Diving Deep – Revealing the mysteries of marine life with SMRT Sequencing

Many scientists are using PacBio Single Molecule, Real-Time (SMRT) Sequencing to explore the genomes and transcriptomes of a wide variety of marine species and ecosystems. These studies are already adding to our understanding of how marine species adapt and evolve, contributing to conservation efforts, and informing how we can optimize food production through efficient aquaculture.

Read More »

Tuesday, April 21, 2020

The bracteatus pineapple genome and domestication of clonally propagated crops.

Domestication of clonally propagated crops such as pineapple from South America was hypothesized to be a ‘one-step operation’. We sequenced the genome of Ananas comosus var. bracteatus CB5 and assembled 513?Mb into 25 chromosomes with 29,412 genes. Comparison of the genomes of CB5, F153 and MD2 elucidated the genomic basis of fiber production, color formation, sugar accumulation and fruit maturation. We also resequenced 89 Ananas genomes. Cultivars ‘Smooth Cayenne’ and ‘Queen’ exhibited ancient and recent admixture, while ‘Singapore Spanish’ supported a one-step operation of domestication. We identified 25 selective sweeps, including a strong sweep containing a pair of tandemly duplicated…

Read More »

Tuesday, April 21, 2020

Chryseobacterium mulctrae sp. nov., isolated from raw cow’s milk.

A Gram-stain-negative bacterial strain, designated CA10T, was isolated from bovine raw milk sampled in Anseong, Republic of Korea. Cells were yellow-pigmented, aerobic, non-motile bacilli and grew optimally at 30?°C and pH 7.0 on tryptic soy agar without supplementation of NaCl. Phylogenetic analysis based on the 16S rRNA gene sequences revealed that strain CA10T belonged to the genus Chryseobacterium, family Flavobacteriaceae, and was most closely related to Chryseobacterium indoltheticum ATCC 27950T (98.75?% similarity). The average nucleotide identity and digital DNA-DNA hybridization values of strain CA10T were 94.4 and 56.9?%, respectively, relative to Chryseobacterium scophthalmum DSM 16779T, being lower than the cut-off…

Read More »

Tuesday, April 21, 2020

The complete genome sequence and comparative genome analysis of the multi-drug resistant food-borne pathogen Bacillus cereus.

Bacillus cereus is an opportunistic human pathogen causing food-borne gastrointestinal infections and non-gastrointestinal infections worldwide. The strain B. cereus FORC_013 was isolated from fried eel. Its genome was completely sequenced by PacBio technology, analyzed and compared with other complete genome sequences of Bacillus to elucidate the distinct pathogenic features of the strain isolated in South Korea. Genomic analysis revealed pathogenesis and host immune evasion-associated genes encoding tissue-destructive exoenzymes, and pore-forming toxins. In particular, tissue-destructive (hemolysin BL, nonhaemolytic enterotoxins) and cytolytic proteins (cytolysin) were observed in the genome, which damage the plasma membrane of the epithelial cells of the small intestine…

Read More »

Tuesday, April 21, 2020

Characterization of Extracellular Biosurfactants Expressed by a Pseudomonas putida Strain Isolated from the Interior of Healthy Roots from Sida hermaphrodita Grown in a Heavy Metal Contaminated Soil.

Pseudomonas putida E41 isolated from root interior of Sida hermaphrodita (grown on a field contaminated with heavy metals) showed high biosurfactant activity. In this paper, we describe data from mass spectrometry and genome analysis, to improve our understanding on the phenotypic properties of the strain. Supernatant derived from P. putida E41 liquid culture exhibited a strong decrease in the surface tension accompanied by the ability for emulsion stabilization. We identified extracellular lipopeptides, putisolvin I and II expression but did not detect rhamnolipids. Their presence was confirmed by matrix-assisted laser desorption and ionization (MALDI) TOF/TOF technique. Moreover, ten phospholipids (mainly phosphatidylethanolamines…

Read More »

Tuesday, April 21, 2020

Chromosome-length haplotigs for yak and cattle from trio binning assembly of an F1 hybrid

Background Assemblies of diploid genomes are generally unphased, pseudo-haploid representations that do not correctly reconstruct the two parental haplotypes present in the individual sequenced. Instead, the assembly alternates between parental haplotypes and may contain duplications in regions where the parental haplotypes are sufficiently different. Trio binning is an approach to genome assembly that uses short reads from both parents to classify long reads from the offspring according to maternal or paternal haplotype origin, and is thus helped rather than impeded by heterozygosity. Using this approach, it is possible to derive two assemblies from an individual, accurately representing both parental contributions…

Read More »

Tuesday, April 21, 2020

Complete genome sequence of Marinobacter sp. LQ44, a haloalkaliphilic phenol-degrading bacterium isolated from a deep-sea hydrothermal vent

Marinobacter sp. strain LQ44, an alkaliphile and moderate halophile from a deep-sea hydrothermal vent on the East Pacific Rise, is a novel phenol-degrading bacterium that is capable of utilizing phenol as sole carbon and energy sources. Here, we present the complete genome sequence of strain LQ44, which consists of 4,435,564?bp with a circular chromosome, 4164 protein-coding genes, 3 rRNA operons and 50 tRNAs. Genome analysis revealed that strain LQ44 may degrade phenol via meta-cleavage pathway. The LQ44 genome contains multiple genes involved in pH adaptation and osmotic adjustment. Genes related to hydrocarbon degradation, aerobic denitrification and potential industrial important enzymes…

Read More »

Tuesday, April 21, 2020

A robust benchmark for germline structural variant detection

New technologies and analysis methods are enabling genomic structural variants (SVs) to be detected with ever-increasing accuracy, resolution, and comprehensiveness. Translating these methods to routine research and clinical practice requires robust benchmark sets. We developed the first benchmark set for identification of both false negative and false positive germline SVs, which complements recent efforts emphasizing increasingly comprehensive characterization of SVs. To create this benchmark for a broadly consented son in a Personal Genome Project trio with broadly available cells and DNA, the Genome in a Bottle (GIAB) Consortium integrated 19 sequence-resolved variant calling methods, both alignment- and de novo assembly-based,…

Read More »

Tuesday, April 21, 2020

Antibiotic susceptibility of plant-derived lactic acid bacteria conferring health benefits to human.

Lactic acid bacteria (LAB) confer health benefits to human when administered orally. We have recently isolated several species of LAB strains from plant sources, such as fruits, vegetables, flowers, and medicinal plants. Since antibiotics used to treat bacterial infection diseases induce the emergence of drug-resistant bacteria in intestinal microflora, it is important to evaluate the susceptibility of LAB strains to antibiotics to ensure the safety and security of processed foods. The aim of the present study is to determine the minimum inhibitory concentration (MIC) of antibiotics against several plant-derived LAB strains. When aminoglycoside antibiotics, such as streptomycin (SM), kanamycin (KM), and…

Read More »

Tuesday, April 21, 2020

Comparison of mitochondrial DNA variants detection using short- and long-read sequencing.

The recent advent of long-read sequencing technologies is expected to provide reasonable answers to genetic challenges unresolvable by short-read sequencing, primarily the inability to accurately study structural variations, copy number variations, and homologous repeats in complex parts of the genome. However, long-read sequencing comes along with higher rates of random short deletions and insertions, and single nucleotide errors. The relatively higher sequencing accuracy of short-read sequencing has kept it as the first choice of screening for single nucleotide variants and short deletions and insertions. Albeit, short-read sequencing still suffers from systematic errors that tend to occur at specific positions where…

Read More »

Tuesday, April 21, 2020

The Chinese chestnut genome: a reference for species restoration

Forest tree species are increasingly subject to severe mortalities from exotic pests, diseases, and invasive organisms, accelerated by climate change. Forest health issues are threatening multiple species and ecosystem sustainability globally. While sources of resistance may be available in related species, or among surviving trees, introgression of resistance genes into threatened tree species in reasonable time frames requires genome-wide breeding tools. Asian species of chestnut (Castanea spp.) are being employed as donors of disease resistance genes to restore native chestnut species in North America and Europe. To aid in the restoration of threatened chestnut species, we present the assembly of…

Read More »

Tuesday, April 21, 2020

Complete Genome of Bacillus velezensis CMT-6 and Comparative Genome Analysis Reveals Lipopeptide Diversity.

The complete genome sequence of Bacillus velezensis type strain CMT-6 is presented for the first time. A comparative analysis between the genome sequences of CMT-6 with the genome of Bacillus amyloliquefaciens DSM7T, B. velezensis FZB42, and Bacillus subtilis 168 revealed major differences in the lipopeptide synthesis genes. Of the above, only the CMT-6 strain possessed an integrated synthetase gene for synthesizing surfactin, iturin, and fengycin. However, CMT-6 shared 14, 12, and 10 other lipopeptide-producing genes with FZB42, DSM7T, and 168 respectively. The largest numbers of non-synonymous mutations were detected in 205 gene sequences that produced these three lipopeptides in CMT-6…

Read More »

Tuesday, April 21, 2020

Whole-genome analysis of New Delhi Metallo-Beta-Lactamase-1-producing Acinetobacter haemolyticus from China.

Infections caused by multi-drug resistant Acinetobacter spp. has aroused worldwide attention. With the increasing isolation of non-baumannii Acinetobacter, the nature of infection and resistance associated with them needs to be elaborated. This study aimed to analyze the characteristics of New Delhi Metallo-Beta-Lactamase-1 (NDM-1)-producing Acinetobacter haemolyticus (named sz1652) isolated from Shenzhen city, China.Antibiotic spectrum was analyzed after antimicrobial susceptibility test. Combined disk test (CDT) was used to detecting the metallo-beta-lactamases (MBLs). Transferability of carbapenem resistance was tested by filter mating experiments and plasmid transformation assays. Whole-genome sequencing (WGS) was performed using HiSeq 2000 and PacBio RS system.The A. haemolyticus strain sz1652…

Read More »

1 2 3 12

Subscribe for blog updates:

Archives

Press Release

Pacific Biosciences Announces New Chief Financial Officer

Monday, September 14, 2020

Stay
Current

Visit our blog »