Menu
April 21, 2020  |  

Comparative Phylogenomics, a Stepping Stone for Bird Biodiversity Studies

Birds are a group with immense availability of genomic resources, and hundreds of forthcoming genomes at the doorstep. We review recent developments in whole genome sequencing, phylogenomics, and comparative genomics of birds. Short read based genome assemblies are common, largely due to efforts of the Bird 10K genome project (B10K). Chromosome-level assemblies are expected to increase due to improved long-read sequencing. The available genomic data has enabled the reconstruction of the bird tree of life with increasing confidence and resolution, but challenges remain in the early splits of Neoaves due to their explosive diversification after the Cretaceous-Paleogene (K-Pg) event. Continued genomic sampling of the bird tree of life will not just better reflect their evolutionary history but also shine new light onto the organization of phylogenetic signal and conflict across the genome. The comparatively simple architecture of avian genomes makes them a powerful system to study the molecular foundation of bird specific traits. Birds are on the verge of becoming an extremely resourceful system to study biodiversity from the nucleotide up.


April 21, 2020  |  

The Y chromosome sequence of the channel catfish suggests novel sex determination mechanisms in teleost fish.

Sex determination mechanisms in teleost fish broadly differ from mammals and birds, with sex chromosomes that are far less differentiated and recombination often occurring along the length of the X and Y chromosomes, posing major challenges for the identification of specific sex determination genes. Here, we take an innovative approach of comparative genome analysis of the genomic sequences of the X chromosome and newly sequenced Y chromosome in the channel catfish.Using a YY channel catfish as the sequencing template, we generated, assembled, and annotated the Y genome sequence of channel catfish. The genome sequence assembly had a contig N50 size of 2.7 Mb and a scaffold N50 size of 26.7 Mb. Genetic linkage and GWAS analyses placed the sex determination locus within a genetic distance less than 0.5?cM and physical distance of 8.9?Mb. However, comparison of the channel catfish X and Y chromosome sequences showed no sex-specific genes. Instead, comparative RNA-Seq analysis between females and males revealed exclusive sex-specific expression of an isoform of the breast cancer anti-resistance 1 (BCAR1) gene in the male during early sex differentiation. Experimental knockout of BCAR1 gene converted genetic males (XY) to phenotypic females, suggesting BCAR1 as a putative sex determination gene.We present the first Y chromosome sequence among teleost fish, and one of the few whole Y chromosome sequences among vertebrate species. Comparative analyses suggest that sex-specific isoform expression through alternative splicing may underlie sex determination processes in the channel catfish, and we identify BCAR1 as a potential sex determination gene.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.