Menu
September 22, 2019  |  

Genome-wide analysis of complex wheat gliadins, the dominant carriers of celiac disease epitopes.

Gliadins, specified by six compound chromosomal loci (Gli-A1/B1/D1 and Gli-A2/B2/D2) in hexaploid bread wheat, are the dominant carriers of celiac disease (CD) epitopes. Because of their complexity, genome-wide characterization of gliadins is a strong challenge. Here, we approached this challenge by combining transcriptomic, proteomic and bioinformatic investigations. Through third-generation RNA sequencing, full-length transcripts were identified for 52 gliadin genes in the bread wheat cultivar Xiaoyan 81. Of them, 42 were active and predicted to encode 25 a-, 11 ?-, one d- and five ?-gliadins. Comparative proteomic analysis between Xiaoyan 81 and six newly-developed mutants each lacking one Gli locus indicated the accumulation of 38 gliadins in the mature grains. A novel group of a-gliadins (the CSTT group) was recognized to contain very few or no CD epitopes. The d-gliadins identified here or previously did not carry CD epitopes. Finally, the mutant lacking Gli-D2 showed significant reductions in the most celiac-toxic a-gliadins and derivative CD epitopes. The insights and resources generated here should aid further studies on gliadin functions in CD and the breeding of healthier wheat.


September 22, 2019  |  

Combination of novel and public RNA-seq datasets to generate an mRNA expression atlas for the domestic chicken.

The domestic chicken (Gallus gallus) is widely used as a model in developmental biology and is also an important livestock species. We describe a novel approach to data integration to generate an mRNA expression atlas for the chicken spanning major tissue types and developmental stages, using a diverse range of publicly-archived RNA-seq datasets and new data derived from immune cells and tissues.Randomly down-sampling RNA-seq datasets to a common depth and quantifying expression against a reference transcriptome using the mRNA quantitation tool Kallisto ensured that disparate datasets explored comparable transcriptomic space. The network analysis tool Graphia was used to extract clusters of co-expressed genes from the resulting expression atlas, many of which were tissue or cell-type restricted, contained transcription factors that have previously been implicated in their regulation, or were otherwise associated with biological processes, such as the cell cycle. The atlas provides a resource for the functional annotation of genes that currently have only a locus ID. We cross-referenced the RNA-seq atlas to a publicly available embryonic Cap Analysis of Gene Expression (CAGE) dataset to infer the developmental time course of organ systems, and to identify a signature of the expansion of tissue macrophage populations during development.Expression profiles obtained from public RNA-seq datasets – despite being generated by different laboratories using different methodologies – can be made comparable to each other. This meta-analytic approach to RNA-seq can be extended with new datasets from novel tissues, and is applicable to any species.


September 22, 2019  |  

Genome characterization of oleaginous Aspergillus oryzae BCC7051: A potential fungal-based platform for lipid production.

The selected robust fungus, Aspergillus oryzae strain BCC7051 is of interest for biotechnological production of lipid-derived products due to its capability to accumulate high amount of intracellular lipids using various sugars and agro-industrial substrates. Here, we report the genome sequence of the oleaginous A. oryzae BCC7051. The obtained reads were de novo assembled into 25 scaffolds spanning of 38,550,958 bps with predicted 11,456 protein-coding genes. By synteny mapping, a large rearrangement was found in two scaffolds of A. oryzae BCC7051 as compared to the reference RIB40 strain. The genetic relationship between BCC7051 and other strains of A. oryzae in terms of aflatoxin production was investigated, indicating that the A. oryzae BCC7051 was categorized into group 2 nonaflatoxin-producing strain. Moreover, a comparative analysis of the structural genes focusing on the involvement in lipid metabolism among oleaginous yeast and fungi revealed the presence of multiple isoforms of metabolic enzymes responsible for fatty acid synthesis in BCC7051. The alternative routes of acetyl-CoA generation as oleaginous features and malate/citrate/pyruvate shuttle were also identified in this A. oryzae strain. The genome sequence generated in this work is a dedicated resource for expanding genome-wide study of microbial lipids at systems level, and developing the fungal-based platform for production of diversified lipids with commercial relevance.


September 22, 2019  |  

The genome of the Hi5 germ cell line from Trichoplusia ni, an agricultural pest and novel model for small RNA biology.

We report a draft assembly of the genome of Hi5 cells from the lepidopteran insect pest,Trichoplusia ni, assigning 90.6% of bases to one of 28 chromosomes and predicting 14,037 protein-coding genes. Chemoreception and detoxification gene families revealT. ni-specific gene expansions that may explain its widespread distribution and rapid adaptation to insecticides. Transcriptome and small RNA data from thorax, ovary, testis, and the germline-derived Hi5 cell line show distinct expression profiles for 295 microRNA- and >393 piRNA-producing loci, as well as 39 genes encoding small RNA pathway proteins. Nearly all of the W chromosome is devoted to piRNA production, andT. nisiRNAs are not 2´-O-methylated. To enable use of Hi5 cells as a model system, we have established genome editing and single-cell cloning protocols. TheT. nigenome provides insights into pest control and allows Hi5 cells to become a new tool for studying small RNAs ex vivo.© 2018, Fu et al.


September 22, 2019  |  

Genomics: Next regeneration sequencing for reference genomes.

Various species have remarkable abilities to regenerate body parts or entire organisms after injury, but a comprehensive understanding of the molecular basis of regeneration mech- anisms will require detailed genomic resources. Two new studies report high-quality reference genomes for two classic regeneration model organ- isms with contrasting genome sizes: the axolotl salamander Ambystoma mexicanum and the planarium flatworm Schmidtea mediterranea.


September 22, 2019  |  

Autologous cell therapy approach for Duchenne muscular dystrophy using PiggyBac transposons and mesoangioblasts.

Duchenne muscular dystrophy (DMD) is a lethal muscle-wasting disease currently without cure. We investigated the use of the PiggyBac transposon for full-length dystrophin expression in murine mesoangioblast (MABs) progenitor cells. DMD murine MABs were transfected with transposable expression vectors for full-length dystrophin and transplanted intramuscularly or intra-arterially into mdx/SCID mice. Intra-arterial delivery indicated that the MABs could migrate to regenerating muscles to mediate dystrophin expression. Intramuscular transplantation yielded dystrophin expression in 11%-44% of myofibers in murine muscles, which remained stable for the assessed period of 5 months. The satellite cells isolated from transplanted muscles comprised a fraction of MAB-derived cells, indicating that the transfected MABs may colonize the satellite stem cell niche. Transposon integration site mapping by whole-genome sequencing indicated that 70% of the integrations were intergenic, while none was observed in an exon. Muscle resistance assessment by atomic force microscopy indicated that 80% of fibers showed elasticity properties restored to those of wild-type muscles. As measured in vivo, transplanted muscles became more resistant to fatigue. This study thus provides a proof-of-principle that PiggyBac transposon vectors may mediate full-length dystrophin expression as well as functional amelioration of the dystrophic muscles within a potential autologous cell-based therapeutic approach of DMD. Copyright © 2018 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.


September 22, 2019  |  

Unrestrained markerless trait stacking in Nannochloropsis gaditana through combined genome editing and marker recycling technologies.

Robust molecular tool kits in model and industrial microalgae are key to efficient targeted manipulation of endogenous and foreign genes in the nuclear genome for basic research and, as importantly, for the development of algal strains to produce renewable products such as biofuels. While Cas9-mediated gene knockout has been demonstrated in a small number of algal species with varying efficiency, the ability to stack traits or generate knockout mutations in two or more loci are often severely limited by selectable agent availability. This poses a critical hurdle in developing production strains, which require stacking of multiple traits, or in probing functionally redundant gene families. Here, we combine Cas9 genome editing with an inducible Cre recombinase in the industrial alga Nannochloropsis gaditana to generate a strain, NgCas9+Cre+, in which the potentially unlimited stacking of knockouts and addition of new genes is readily achievable. Cre-mediated marker recycling is first demonstrated in the removal of the selectable marker and GFP reporter transgenes associated with the Cas9/Cre construct in NgCas9+Cre+ Next, we show the proof-of-concept generation of a markerless knockout in a gene encoding an acyl-CoA oxidase (Aco1), as well as the markerless recapitulation of a 2-kb insert in the ZnCys gene 5′-UTR, which results in a doubling of wild-type lipid productivity. Finally, through an industrially oriented process, we generate mutants that exhibit up to ~50% reduction in photosynthetic antennae size by markerless knockout of seven genes in the large light-harvesting complex gene family. Copyright © 2018 the Author(s). Published by PNAS.


September 22, 2019  |  

A rapid method for directed gene knockout for screening in G0 zebrafish.

Zebrafish is a powerful model for forward genetics. Reverse genetic approaches are limited by the time required to generate stable mutant lines. We describe a system for gene knockout that consistently produces null phenotypes in G0 zebrafish. Yolk injection of sets of four CRISPR/Cas9 ribonucleoprotein complexes redundantly targeting a single gene recapitulated germline-transmitted knockout phenotypes in >90% of G0 embryos for each of 8 test genes. Early embryonic (6 hpf) and stable adult phenotypes were produced. Simultaneous multi-gene knockout was feasible but associated with toxicity in some cases. To facilitate use, we generated a lookup table of four-guide sets for 21,386 zebrafish genes and validated several. Using this resource, we targeted 50 cardiomyocyte transcriptional regulators and uncovered a role of zbtb16a in cardiac development. This system provides a platform for rapid screening of genes of interest in development, physiology, and disease models in zebrafish. Copyright © 2018 Elsevier Inc. All rights reserved.


September 22, 2019  |  

Optical and physical mapping with local finishing enables megabase-scale resolution of agronomically important regions in the wheat genome.

Numerous scaffold-level sequences for wheat are now being released and, in this context, we report on a strategy for improving the overall assembly to a level comparable to that of the human genome.Using chromosome 7A of wheat as a model, sequence-finished megabase-scale sections of this chromosome were established by combining a new independent assembly using a bacterial artificial chromosome (BAC)-based physical map, BAC pool paired-end sequencing, chromosome-arm-specific mate-pair sequencing and Bionano optical mapping with the International Wheat Genome Sequencing Consortium RefSeq v1.0 sequence and its underlying raw data. The combined assembly results in 18 super-scaffolds across the chromosome. The value of finished genome regions is demonstrated for two approximately 2.5 Mb regions associated with yield and the grain quality phenotype of fructan carbohydrate grain levels. In addition, the 50 Mb centromere region analysis incorporates cytological data highlighting the importance of non-sequence data in the assembly of this complex genome region.Sufficient genome sequence information is shown to now be available for the wheat community to produce sequence-finished releases of each chromosome of the reference genome. The high-level completion identified that an array of seven fructosyl transferase genes underpins grain quality and that yield attributes are affected by five F-box-only-protein-ubiquitin ligase domain and four root-specific lipid transfer domain genes. The completed sequence also includes the centromere.


September 22, 2019  |  

Phenotypic and genomic properties of Brachybacterium vulturis sp. nov. and Brachybacterium avium sp. nov.

Two strains, VM2412T and VR2415T, were isolated from the feces of an Andean condor (Vultur gryphus) living in Seoul Grand Park, Gyeonggi-do, South Korea. Cells of both strains were observed to be Gram-stain positive, non-motile, aerobic, catalase positive and oxidase negative. Growth was found to occur at 10-30°C, showing optimum growth at 30°C. The strains could tolerate up to 15% (w/v) NaCl concentration and grow at pH 6-9. The strains shared 99.3% 16S rRNA gene sequence similarity to each other but were identified as two distinct species based on 89.0-89.2% ANIb, 90.3% ANIm, 89.7% OrthoANI and 38.0% dDDH values calculated using whole genome sequences. Among species with validly published names, Brachybacterium ginsengisoli DCY80T shared high 16S rRNA gene sequence similarities with strains VM2412T (98.7%) and VR2415T (98.4%) and close genetic relatedness with strains VM2412T (83.3-83.5% ANIb, 87.0% ANIm, 84.3% OrthoANI and 27.8% dDDH) and VR2415T (82.8-83.2% ANIb, 86.7% ANIm, 83.9% OrthoANI and 27.2% dDDH). The major fatty acid of the two strains was identified as anteiso-C15:0 and the polar lipids consisted of phosphatidylglycerol, diphosphatidylglycerol, presumptively phosphatidylethanolamine and three unidentified glycolipids. Strain VR2415T also produced an unidentified phospholipid. The cell walls of the two strains contained meso-diaminopimelic acid as diagnostic diamino acid and the whole cell sugars were ribose, glucose, and galactose. The strains contained MK-7 as their predominant menaquinone. The genomes of strains VM2412T, VR2415T, and B. ginsengisoli DCY80T were sequenced in this study. The genomic G+C contents of strains VM2412T and VR2415T were determined to be 70.8 and 70.4 mol%, respectively. A genome-based phylogenetic tree constructed using an up-to-date bacterial core gene set (UBCG) showed that the strains formed a clade with members of the genus Brachybacterium, supporting their taxonomic classification into the genus Brachybacterium. Based on phenotypic and genotypic analyses in this study, strains VM2412T and VR2415T are considered to represent two novel species of the genus Brachybacterium and the names Brachybacterium vulturis sp. nov. and Brachybacterium avium sp. nov. are proposed for strains VM2412T (=KCTC 39996T = JCM 32142T) and VR2415T (=KCTC 39997T = JCM 32143T), respectively.


September 22, 2019  |  

Functional and genome sequence-driven characterization of tal effector gene repertoires reveals novel variants with altered specificities in closely related Malian Xanthomonas oryzae pv. oryzae strains.

Rice bacterial leaf blight (BLB) is caused by Xanthomonas oryzae pv. oryzae (Xoo) which injects Transcription Activator-Like Effectors (TALEs) into the host cell to modulate the expression of target disease susceptibility genes. Xoo major-virulence TALEs universally target susceptibility genes of the SWEET sugar transporter family. TALE-unresponsive alleles of OsSWEET genes have been identified in the rice germplasm or created by genome editing and confer resistance to BLB. In recent years, BLB has become one of the major biotic constraints to rice cultivation in Mali. To inform the deployment of alternative sources of resistance in this country, rice lines carrying alleles of OsSWEET14 unresponsive to either TalF (formerly Tal5) or TalC, two important TALEs previously identified in West African Xoo, were challenged with a panel of strains recently isolated in Mali and were found to remain susceptible to these isolates. The characterization of TALE repertoires revealed that talF and talC specific molecular markers were simultaneously present in all surveyed Malian strains, suggesting that the corresponding TALEs are broadly deployed by Malian Xoo to redundantly target the OsSWEET14 gene promoter. Consistent with this, the capacity of most Malian Xoo to induce OsSWEET14 was unaffected by either talC- or talF-unresponsive alleles of this gene. Long-read sequencing and assembly of eight Malian Xoo genomes confirmed the widespread occurrence of active TalF and TalC variants and provided a detailed insight into the diversity of TALE repertoires. All sequenced strains shared nine evolutionary related tal effector genes. Notably, a new TalF variant that is unable to induce OsSWEET14 was identified. Furthermore, two distinct TalB variants were shown to have lost the ability to simultaneously induce two susceptibility genes as previously reported for the founding members of this group from strains MAI1 and BAI3. Yet, both new TalB variants retained the ability to induce one or the other of the two susceptibility genes. These results reveal molecular and functional differences in tal repertoires and will be important for the sustainable deployment of broad-spectrum and durable resistance to BLB in West Africa.


September 22, 2019  |  

Genomic approaches for studying crop evolution.

Understanding how crop plants evolved from their wild relatives and spread around the world can inform about the origins of agriculture. Here, we review how the rapid development of genomic resources and tools has made it possible to conduct genetic mapping and population genetic studies to unravel the molecular underpinnings of domestication and crop evolution in diverse crop species. We propose three future avenues for the study of crop evolution: establishment of high-quality reference genomes for crops and their wild relatives; genomic characterization of germplasm collections; and the adoption of novel methodologies such as archaeogenetics, epigenomics, and genome editing.


September 22, 2019  |  

Ring synthetic chromosome V SCRaMbLE.

Structural variations (SVs) exert important functional impacts on biological phenotypic diversity. Here we show a ring synthetic yeast chromosome V (ring_synV) can be used to continuously generate complex genomic variations and improve the production of prodeoxyviolacein (PDV) by applying Synthetic Chromosome Recombination and Modification by LoxP-mediated Evolution (SCRaMbLE) in haploid yeast cells. The SCRaMbLE of ring_synV generates aneuploid yeast strains with increased PDV productivity, and we identify aneuploid chromosome I, III, VI, XII, XIII, and ring_synV. The neochromosome of SCRaMbLEd ring_synV generated more unbalanced forms of variations, including duplication, insertions, and balanced forms of translocations and inversions than its linear form. Furthermore, of the 29 novel SVs detected, 11 prompted the PDV biosynthesis; and the deletion of uncharacterized gene YER182W is related to the improvement of the PDV. Overall, the SCRaMbLEing ring_synV embraces the evolution of the genome by modifying the chromosome number, structure, and organization, identifying targets for phenotypic comprehension.


September 22, 2019  |  

Genome-wide researches and applications on Dendrobium.

This review summarizes current knowledge of chromosome characterization, genetic mapping, genomic sequencing, quality formation, floral transition, propagation, and identification in Dendrobium. The widely distributed Dendrobium has been studied for a long history, due to its important economic values in both medicine and ornamental. In recent years, some species of Dendrobium and other orchids had been reported on genomic sequences, using the next-generation sequencing technology. And the chloroplast genomes of many Dendrobium species were also revealed. The chromosomes of most Dendrobium species belong to mini-chromosomes, and showed 2n?=?38. Only a few of genetic studies were reported in Dendrobium. After revealing of genomic sequences, the techniques of transcriptomics, proteomics and metabolomics could be employed on Dendrobium easily. Some other molecular biological techniques, such as gene cloning, gene editing, genetic transformation and molecular marker developing, had also been applied on the basic research of Dendrobium, successively. As medicinal plants, insights into the biosynthesis of some medicinal components were the most important. As ornamental plants, regulation of flower related characteristics was the most important. More, knowledge of growth and development, environmental interaction, evolutionary analysis, breeding of new cultivars, propagation, and identification of species and herbs were also required for commercial usage. All of these studies were improved using genomic sequences and related technologies. To answer some key scientific issues in Dendrobium, quality formation, flowering, self-incompatibility and seed germination would be the focus of future research. And genome related technologies and studies would be helpful.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.