Menu
April 21, 2020  |  

A Species-Wide Inventory of NLR Genes and Alleles in Arabidopsis thaliana.

Infectious disease is both a major force of selection in nature and a prime cause of yield loss in agriculture. In plants, disease resistance is often conferred by nucleotide-binding leucine-rich repeat (NLR) proteins, intracellular immune receptors that recognize pathogen proteins and their effects on the host. Consistent with extensive balancing and positive selection, NLRs are encoded by one of the most variable gene families in plants, but the true extent of intraspecific NLR diversity has been unclear. Here, we define a nearly complete species-wide pan-NLRome in Arabidopsis thaliana based on sequence enrichment and long-read sequencing. The pan-NLRome largely saturates with approximately 40 well-chosen wild strains, with half of the pan-NLRome being present in most accessions. We chart NLR architectural diversity, identify new architectures, and quantify selective forces that act on specific NLRs and NLR domains. Our study provides a blueprint for defining pan-NLRomes.Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved.


April 21, 2020  |  

Substantial Heritable Variation in Recombination Rate on Multiple Scales in Honeybees and Bumblebees.

Meiotic recombination shuffles genetic variation and promotes correct segregation of chromosomes. Rates of recombination vary on several scales, both within genomes and between individuals, and this variation is affected by both genetic and environmental factors. Social insects have extremely high rates of recombination, although the evolutionary causes of this are not known. Here, we estimate rates of crossovers and gene conversions in 22 colonies of the honeybee, Apis mellifera, and 9 colonies of the bumblebee, Bombus terrestris, using direct sequencing of 299 haploid drone offspring. We confirm that both species have extremely elevated crossover rates, with higher rates measured in the highly eusocial honeybee than the primitively social bumblebee. There are also significant differences in recombination rate between subspecies of honeybee. There is substantial variation in genome-wide recombination rate between individuals of both A. mellifera and B. terrestris and the distribution of these rates overlap between species. A large proportion of interindividual variation in recombination rate is heritable, which indicates the presence of variation in trans-acting factors that influence recombination genome-wide. We infer that levels of crossover interference are significantly lower in honeybees compared to bumblebees, which may be one mechanism that contributes to higher recombination rates in honeybees. We also find a significant increase in recombination rate with distance from the centromere, mirrored by methylation differences. We detect a strong transmission bias due to GC-biased gene conversion associated with noncrossover gene conversions. Our results shed light on the mechanistic causes of extreme rates of recombination in social insects and the genetic architecture of recombination rate variation. Copyright © 2019 by the Genetics Society of America.


April 21, 2020  |  

Meiotic sex in Chagas disease parasite Trypanosoma cruzi.

Genetic exchange enables parasites to rapidly transform disease phenotypes and exploit new host populations. Trypanosoma cruzi, the parasitic agent of Chagas disease and a public health concern throughout Latin America, has for decades been presumed to exchange genetic material rarely and without classic meiotic sex. We present compelling evidence from 45 genomes sequenced from southern Ecuador that T. cruzi in fact maintains truly sexual, panmictic groups that can occur alongside others that remain highly clonal after past hybridization events. These groups with divergent reproductive strategies appear genetically isolated despite possible co-occurrence in vectors and hosts. We propose biological explanations for the fine-scale disconnectivity we observe and discuss the epidemiological consequences of flexible reproductive modes. Our study reinvigorates the hunt for the site of genetic exchange in the T. cruzi life cycle, provides tools to define the genetic determinants of parasite virulence, and reforms longstanding theory on clonality in trypanosomatid parasites.


April 21, 2020  |  

Comparative Phylogenomics, a Stepping Stone for Bird Biodiversity Studies

Birds are a group with immense availability of genomic resources, and hundreds of forthcoming genomes at the doorstep. We review recent developments in whole genome sequencing, phylogenomics, and comparative genomics of birds. Short read based genome assemblies are common, largely due to efforts of the Bird 10K genome project (B10K). Chromosome-level assemblies are expected to increase due to improved long-read sequencing. The available genomic data has enabled the reconstruction of the bird tree of life with increasing confidence and resolution, but challenges remain in the early splits of Neoaves due to their explosive diversification after the Cretaceous-Paleogene (K-Pg) event. Continued genomic sampling of the bird tree of life will not just better reflect their evolutionary history but also shine new light onto the organization of phylogenetic signal and conflict across the genome. The comparatively simple architecture of avian genomes makes them a powerful system to study the molecular foundation of bird specific traits. Birds are on the verge of becoming an extremely resourceful system to study biodiversity from the nucleotide up.


April 21, 2020  |  

Differential retention of transposable element-derived sequences in outcrossing Arabidopsis genomes.

Transposable elements (TEs) are genomic parasites with major impacts on host genome architecture and host adaptation. A proper evaluation of their evolutionary significance has been hampered by the paucity of short scale phylogenetic comparisons between closely related species. Here, we characterized the dynamics of TE accumulation at the micro-evolutionary scale by comparing two closely related plant species, Arabidopsis lyrata and A. halleri.Joint genome annotation in these two outcrossing species confirmed that both contain two distinct populations of TEs with either ‘recent’ or ‘old’ insertion histories. Identification of rare segregating insertions suggests that diverse TE families contribute to the ongoing dynamics of TE accumulation in the two species. Orthologous TE fragments (i.e. those that have been maintained in both species), tend to be located closer to genes than those that are retained in one species only. Compared to non-orthologous TE insertions, those that are orthologous tend to produce fewer short interfering RNAs, are less heavily methylated when found within or adjacent to genes and these tend to have lower expression levels. These findings suggest that long-term retention of TE insertions reflects their frequent acquisition of adaptive roles and/or the deleterious effects of removing nearly neutral TE insertions when they are close to genes.Our results indicate a rapid evolutionary dynamics of the TE landscape in these two outcrossing species, with an important input of a diverse set of new insertions with variable propensity to resist deletion.


April 21, 2020  |  

Origin and recent expansion of an endogenous gammaretroviral lineage in domestic and wild canids.

Vertebrate genomes contain a record of retroviruses that invaded the germlines of ancestral hosts and are passed to offspring as endogenous retroviruses (ERVs). ERVs can impact host function since they contain the necessary sequences for expression within the host. Dogs are an important system for the study of disease and evolution, yet no substantiated reports of infectious retroviruses in dogs exist. Here, we utilized Illumina whole genome sequence data to assess the origin and evolution of a recently active gammaretroviral lineage in domestic and wild canids.We identified numerous recently integrated loci of a canid-specific ERV-Fc sublineage within Canis, including 58 insertions that were absent from the reference assembly. Insertions were found throughout the dog genome including within and near gene models. By comparison of orthologous occupied sites, we characterized element prevalence across 332 genomes including all nine extant canid species, revealing evolutionary patterns of ERV-Fc segregation among species as well as subpopulations.Sequence analysis revealed common disruptive mutations, suggesting a predominant form of ERV-Fc spread by trans complementation of defective proviruses. ERV-Fc activity included multiple circulating variants that infected canid ancestors from the last 20 million to within 1.6 million years, with recent bursts of germline invasion in the sublineage leading to wolves and dogs.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.