Menu
April 21, 2020  |  

The Genome of Armadillidium vulgare (Crustacea, Isopoda) Provides Insights into Sex Chromosome Evolution in the Context of Cytoplasmic Sex Determination.

The terrestrial isopod Armadillidium vulgare is an original model to study the evolution of sex determination and symbiosis in animals. Its sex can be determined by ZW sex chromosomes, or by feminizing Wolbachia bacterial endosymbionts. Here, we report the sequence and analysis of the ZW female genome of A. vulgare. A distinguishing feature of the 1.72 gigabase assembly is the abundance of repeats (68% of the genome). We show that the Z and W sex chromosomes are essentially undifferentiated at the molecular level and the W-specific region is extremely small (at most several hundreds of kilobases). Our results suggest that recombination suppression has not spread very far from the sex-determining locus, if at all. This is consistent with A. vulgare possessing evolutionarily young sex chromosomes. We characterized multiple Wolbachia nuclear inserts in the A. vulgare genome, none of which is associated with the W-specific region. We also identified several candidate genes that may be involved in the sex determination or sexual differentiation pathways. The A. vulgare genome serves as a resource for studying the biology and evolution of crustaceans, one of the most speciose and emblematic metazoan groups. © The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.


April 21, 2020  |  

Characterizing the major structural variant alleles of the human genome.

In order to provide a comprehensive resource for human structural variants (SVs), we generated long-read sequence data and analyzed SVs for fifteen human genomes. We sequence resolved 99,604 insertions, deletions, and inversions including 2,238 (1.6 Mbp) that are shared among all discovery genomes with an additional 13,053 (6.9 Mbp) present in the majority, indicating minor alleles or errors in the reference. Genotyping in 440 additional genomes confirms the most common SVs in unique euchromatin are now sequence resolved. We report a ninefold SV bias toward the last 5 Mbp of human chromosomes with nearly 55% of all VNTRs (variable number of tandem repeats) mapping to this portion of the genome. We identify SVs affecting coding and noncoding regulatory loci improving annotation and interpretation of functional variation. These data provide the framework to construct a canonical human reference and a resource for developing advanced representations capable of capturing allelic diversity. Copyright © 2018 Elsevier Inc. All rights reserved.


April 21, 2020  |  

Inter-chromosomal coupling between vision and pigmentation genes during genomic divergence.

Recombination between loci underlying mate choice and ecological traits is a major evolutionary force acting against speciation with gene flow. The evolution of linkage disequilibrium between such loci is therefore a fundamental step in the origin of species. Here, we show that this process can take place in the absence of physical linkage in hamlets-a group of closely related reef fishes from the wider Caribbean that differ essentially in colour pattern and are reproductively isolated through strong visually-based assortative mating. Using full-genome analysis, we identify four narrow genomic intervals that are consistently differentiated among sympatric species in a backdrop of extremely low genomic divergence. These four intervals include genes involved in pigmentation (sox10), axial patterning (hoxc13a), photoreceptor development (casz1) and visual sensitivity (SWS and LWS opsins) that develop islands of long-distance and inter-chromosomal linkage disequilibrium as species diverge. The relatively simple genomic architecture of species differences facilitates the evolution of linkage disequilibrium in the presence of gene flow.


April 21, 2020  |  

De novo assembly of white poplar genome and genetic diversity of white poplar population in Irtysh River basin in China.

The white poplar (Populus alba) is widely distributed in Central Asia and Europe. There are natural populations of white poplar in Irtysh River basin in China. It also can be cultivated and grown well in northern China. In this study, we sequenced the genome of P. alba by single-molecule real-time technology. De novo assembly of P. alba had a genome size of 415.99 Mb with a contig N50 of 1.18 Mb. A total of 32,963 protein-coding genes were identified. 45.16% of the genome was annotated as repetitive elements. Genome evolution analysis revealed that divergence between P. alba and Populus trichocarpa (black cottonwood) occurred ~5.0 Mya (3.0, 7.1). Fourfold synonymous third-codon transversion (4DTV) and synonymous substitution rate (ks) distributions supported the occurrence of the salicoid WGD event (~ 65 Mya). Twelve natural populations of P. alba in the Irtysh River basin in China were sequenced to explore the genetic diversity. Average pooled heterozygosity value of P. alba populations was 0.170±0.014, which was lower than that in Italy (0.271±0.051) and Hungary (0.264±0.054). Tajima’s D values showed a negative distribution, which might signify an excess of low frequency polymorphisms and a bottleneck with later expansion of P. alba populations examined.


April 21, 2020  |  

An open resource for accurately benchmarking small variant and reference calls.

Benchmark small variant calls are required for developing, optimizing and assessing the performance of sequencing and bioinformatics methods. Here, as part of the Genome in a Bottle (GIAB) Consortium, we apply a reproducible, cloud-based pipeline to integrate multiple short- and linked-read sequencing datasets and provide benchmark calls for human genomes. We generate benchmark calls for one previously analyzed GIAB sample, as well as six genomes from the Personal Genome Project. These new genomes have broad, open consent, making this a ‘first of its kind’ resource that is available to the community for multiple downstream applications. We produce 17% more benchmark single nucleotide variations, 176% more indels and 12% larger benchmark regions than previously published GIAB benchmarks. We demonstrate that this benchmark reliably identifies errors in existing callsets and highlight challenges in interpreting performance metrics when using benchmarks that are not perfect or comprehensive. Finally, we identify strengths and weaknesses of callsets by stratifying performance according to variant type and genome context.


April 21, 2020  |  

Whole genome sequence of Auricularia heimuer (Basidiomycota, Fungi), the third most important cultivated mushroom worldwide.

Heimuer, Auricularia heimuer, is one of the most famous traditional Chinese foods and medicines, and it is the third most important cultivated mushroom worldwide. The aim of this study is to develop genomic resources for A. heimuer to furnish tools that can be used to study its secondary metabolite production capability, wood degradation ability and biosynthesis of polysaccharides. The genome was obtained from single spore mycelia of the strain Dai 13782 by using combined high-throughput Illumina HiSeq 4000 system with the PacBio RSII long-read sequencing platform. Functional annotation was accomplished by blasting protein sequences with different public available databases to obtain their corresponding annotations. It is 49.76Mb in size with a N50 scaffold size of 1,350,668bp and encodes 16,244 putative predicted genes. This is the first genome-scale assembly and annotation for A. heimuer, which is the third sequenced species in Auricularia. Copyright © 2018 Elsevier Inc. All rights reserved.


April 21, 2020  |  

An Annotated Genome for Haliotis rufescens (Red Abalone) and Resequenced Green, Pink, Pinto, Black, and White Abalone Species.

Abalone are one of the few marine taxa where aquaculture production dominates the global market as a result of increasing demand and declining natural stocks from overexploitation and disease. To better understand abalone biology, aid in conservation efforts for endangered abalone species, and gain insight into sustainable aquaculture, we created a draft genome of the red abalone (Haliotis rufescens). The approach to this genome draft included initial assembly using raw Illumina and PacBio sequencing data with MaSuRCA, before scaffolding using sequencing data generated from Chicago library preparations with HiRise2. This assembly approach resulted in 8,371 scaffolds and total length of 1.498?Gb; the N50 was 1.895?Mb, and the longest scaffold was 13.2?Mb. Gene models were predicted, using MAKER2, from RNA-Seq data and all related expressed sequence tags and proteins from NCBI; this resulted in 57,785 genes with an average length of 8,255?bp. In addition, single nucleotide polymorphisms were called on Illumina short-sequencing reads from five other eastern Pacific abalone species: the green (H. fulgens), pink (H. corrugata), pinto (H. kamtschatkana), black (H. cracherodii), and white (H. sorenseni) abalone. Phylogenetic relationships largely follow patterns detected by previous studies based on 1,784,991 high-quality single nucleotide polymorphisms. Among the six abalone species examined, the endangered white abalone appears to harbor the lowest levels of heterozygosity. This draft genome assembly and the sequencing data provide a foundation for genome-enabled aquaculture improvement for red abalone, and for genome-guided conservation efforts for the other five species and, in particular, for the endangered white and black abalone.


April 21, 2020  |  

In-depth analysis of the genome of Trypanosoma evansi, an etiologic agent of surra.

Trypanosoma evansi is the causative agent of the animal trypanosomiasis surra, a disease with serious economic burden worldwide. The availability of the genome of its closely related parasite Trypanosoma brucei allows us to compare their genetic and evolutionarily shared and distinct biological features. The complete genomic sequence of the T. evansi YNB strain was obtained using a combination of genomic and transcriptomic sequencing, de novo assembly, and bioinformatic analysis. The genome size of the T. evansi YNB strain was 35.2 Mb, showing 96.59% similarity in sequence and 88.97% in scaffold alignment with T. brucei. A total of 8,617 protein-coding genes, accounting for 31% of the genome, were predicted. Approximately 1,641 alternative splicing events of 820 genes were identified, with a majority mediated by intron retention, which represented a major difference in post-transcriptional regulation between T. evansi and T. brucei. Disparities in gene copy number of the variant surface glycoprotein, expression site-associated genes, microRNAs, and RNA-binding protein were clearly observed between the two parasites. The results revealed the genomic determinants of T. evansi, which encoded specific biological characteristics that distinguished them from other related trypanosome species.


April 21, 2020  |  

Bioinformatic analysis of the complete genome sequence of Pectobacterium carotovorum subsp. brasiliense BZA12 and candidate effector screening

AbstractPectobacterium carotovorum subsp. brasiliense (Pcb) is a gram-negative, plant pathogenic bacterium of the soft rot Enterobacteriaceae (SRE) family. We present the complete genome sequence of Pcb strain BZA12, which reveals that Pcb strain BZA12 carries a single 4,924,809 bp chromosome with 51.97% GC content and comprises 4508 predicted protein-coding genes.Geneannotationofthese genes utilizedGO, KEGG,and COG databases.Incomparison withthree closely related soft-rot pathogens, strain BZA12 has 3797 gene families, among which 3107 gene families are identified as orthologous with those of both P. carotovorum subsp. carotovorum PCC21 and P. carotovorum subsp. odoriferum BCS7, as well as 36 putative Unique Gene Families. We selected five putative effectors from the BZA12 genome and transiently expressed them in Nicotiana benthamiana. Candidate effector A12GL002483 was localized in the cell nucleus and induced cell death. This study provides a foundation for a better understanding of the genomic structure and function of Pcb, particularly in the discovery of potential pathogenic factors and for the development of more effective strategies against this pathogen.


April 21, 2020  |  

Genome assembly and gene expression in the American black bear provides new insights into the renal response to hibernation.

The prevalence of chronic kidney disease (CKD) is rising worldwide and 10-15% of the global population currently suffers from CKD and its complications. Given the increasing prevalence of CKD there is an urgent need to find novel treatment options. The American black bear (Ursus americanus) copes with months of lowered kidney function and metabolism during hibernation without the devastating effects on metabolism and other consequences observed in humans. In a biomimetic approach to better understand kidney adaptations and physiology in hibernating black bears, we established a high-quality genome assembly. Subsequent RNA-Seq analysis of kidneys comparing gene expression profiles in black bears entering (late fall) and emerging (early spring) from hibernation identified 169 protein-coding genes that were differentially expressed. Of these, 101 genes were downregulated and 68 genes were upregulated after hibernation. Fold changes ranged from 1.8-fold downregulation (RTN4RL2) to 2.4-fold upregulation (CISH). Most notable was the upregulation of cytokine suppression genes (SOCS2, CISH, and SERPINC1) and the lack of increased expression of cytokines and genes involved in inflammation. The identification of these differences in gene expression in the black bear kidney may provide new insights in the prevention and treatment of CKD. © The Author(s) 2018. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.


April 21, 2020  |  

A 12-kb structural variation in progressive myoclonic epilepsy was newly identified by long-read whole-genome sequencing.

We report a family with progressive myoclonic epilepsy who underwent whole-exome sequencing but was negative for pathogenic variants. Similar clinical courses of a devastating neurodegenerative phenotype of two affected siblings were highly suggestive of a genetic etiology, which indicates that the survey of genetic variation by whole-exome sequencing was not comprehensive. To investigate the presence of a variant that remained unrecognized by standard genetic testing, PacBio long-read sequencing was performed. Structural variant (SV) detection using low-coverage (6×) whole-genome sequencing called 17,165 SVs (7,216 deletions and 9,949 insertions). Our SV selection narrowed down potential candidates to only five SVs (two deletions and three insertions) on the genes tagged with autosomal recessive phenotypes. Among them, a 12.4-kb deletion involving the CLN6 gene was the top candidate because its homozygous abnormalities cause neuronal ceroid lipofuscinosis. This deletion included the initiation codon and was found in a GC-rich region containing multiple repetitive elements. These results indicate the presence of a causal variant in a difficult-to-sequence region and suggest that such variants that remain enigmatic after the application of current whole-exome sequencing technology could be uncovered by unbiased application of long-read whole-genome sequencing.


April 21, 2020  |  

Fast and accurate genomic analyses using genome graphs.

The human reference genome serves as the foundation for genomics by providing a scaffold for alignment of sequencing reads, but currently only reflects a single consensus haplotype, thus impairing analysis accuracy. Here we present a graph reference genome implementation that enables read alignment across 2,800 diploid genomes encompassing 12.6 million SNPs and 4.0 million insertions and deletions (indels). The pipeline processes one whole-genome sequencing sample in 6.5?h using a system with 36?CPU cores. We show that using a graph genome reference improves read mapping sensitivity and produces a 0.5% increase in variant calling recall, with unaffected specificity. Structural variations incorporated into a graph genome can be genotyped accurately under a unified framework. Finally, we show that iterative augmentation of graph genomes yields incremental gains in variant calling accuracy. Our implementation is an important advance toward fulfilling the promise of graph genomes to radically enhance the scalability and accuracy of genomic analyses.


April 21, 2020  |  

Hybrid sequencing-based personal full-length transcriptomic analysis implicates proteostatic stress in metastatic ovarian cancer.

Comprehensive molecular characterization of myriad somatic alterations and aberrant gene expressions at personal level is key to precision cancer therapy, yet limited by current short-read sequencing technology, individualized catalog of complete genomic and transcriptomic features is thus far elusive. Here, we integrated second- and third-generation sequencing platforms to generate a multidimensional dataset on a patient affected by metastatic epithelial ovarian cancer. Whole-genome and hybrid transcriptome dissection captured global genetic and transcriptional variants at previously unparalleled resolution. Particularly, single-molecule mRNA sequencing identified a vast array of unannotated transcripts, novel long noncoding RNAs and gene chimeras, permitting accurate determination of transcription start, splice, polyadenylation and fusion sites. Phylogenetic and enrichment inference of isoform-level measurements implicated early functional divergence and cytosolic proteostatic stress in shaping ovarian tumorigenesis. A complementary imaging-based high-throughput drug screen was performed and subsequently validated, which consistently pinpointed proteasome inhibitors as an effective therapeutic regime by inducing protein aggregates in ovarian cancer cells. Therefore, our study suggests that clinical application of the emerging long-read full-length analysis for improving molecular diagnostics is feasible and informative. An in-depth understanding of the tumor transcriptome complexity allowed by leveraging the hybrid sequencing approach lays the basis to reveal novel and valid therapeutic vulnerabilities in advanced ovarian malignancies.


April 21, 2020  |  

Long-read sequencing identified intronic repeat expansions in SAMD12 from Chinese pedigrees affected with familial cortical myoclonic tremor with epilepsy.

The locus for familial cortical myoclonic tremor with epilepsy (FCMTE) has long been mapped to 8q24 in linkage studies, but the causative mutations remain unclear. Recently, expansions of intronic TTTCA and TTTTA repeat motifs within SAMD12 were found to be involved in the pathogenesis of FCMTE in Japanese pedigrees. We aim to identify the causative mutations of FCMTE in Chinese pedigrees.We performed genetic linkage analysis by microsatellite markers in a five-generation Chinese pedigree with 55 members. We also used array-comparative genomic hybridisation (CGH) and next-generation sequencing (NGS) technologies (whole-exome sequencing, capture region deep sequencing and whole-genome sequencing) to identify the causative mutations in the disease locus. Recently, we used low-coverage (~10×) long-read genome sequencing (LRS) on the PacBio Sequel and Oxford Nanopore platforms to identify the causative mutations, and used repeat-primed PCR for validation of the repeat expansions.Linkage analysis mapped the disease locus to 8q23.3-24.23. Array-CGH and NGS failed to identify causative mutations in this locus. LRS identified the intronic TTTCA and TTTTA repeat expansions in SAMD12 as the causative mutations, thus corroborating the recently published results in Japanese pedigrees.We identified the pentanucleotide repeat expansion in SAMD12 as the causative mutation in Chinese FCMTE pedigrees. Our study also suggested that LRS is an effective tool for molecular diagnosis of genetic disorders, especially for neurological diseases that cannot be positively diagnosed by conventional clinical microarray and NGS technologies. © Author(s) (or their employer(s)) 2019. No commercial re-use. See rights and permissions. Published by BMJ.


April 21, 2020  |  

Population Genome Sequencing of the Scab Fungal Species Venturia inaequalis, Venturia pirina, Venturia aucupariae and Venturia asperata.

The Venturia genus comprises fungal species that are pathogens on Rosaceae host plants, including V. inaequalis and V. asperata on apple, V. aucupariae on sorbus and V. pirina on pear. Although the genetic structure of V. inaequalis populations has been investigated in detail, genomic features underlying these subdivisions remain poorly understood. Here, we report whole genome sequencing of 87 Venturia strains that represent each species and each population within V. inaequalis We present a PacBio genome assembly for the V. inaequalis EU-B04 reference isolate. The size of selected genomes was determined by flow cytometry, and varied from 45 to 93 Mb. Genome assemblies of V. inaequalis and V. aucupariae contain a high content of transposable elements (TEs), most of which belong to the Gypsy or Copia LTR superfamilies and have been inactivated by Repeat-Induced Point mutations. The reference assembly of V. inaequalis presents a mosaic structure of GC-equilibrated regions that mainly contain predicted genes and AT-rich regions, mainly composed of TEs. Six pairs of strains were identified as clones. Single-Nucleotide Polymorphism (SNP) analysis between these clones revealed a high number of SNPs that are mostly located in AT-rich regions due to misalignments and allowed determining a false discovery rate. The availability of these genome sequences is expected to stimulate genetics and population genomics research of Venturia pathogens. Especially, it will help understanding the evolutionary history of Venturia species that are pathogenic on different hosts, a history that has probably been substantially influenced by TEs.Copyright © 2019 Le Cam et al.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.