With Single Molecule, Real-Time (SMRT) Sequencing and the Sequel System, you can easily and cost effectively generate highly accurate long reads (HiFi reads, >99% single-molecule accuracy) from genes or regions of interest ranging in size from several hundred base pairs to 20 kb. Target all types of variation across relevant genomic regions, including low complexity regions like repeat expansions, promoters, and flanking regions of transposable elements.
With highly accurate long reads (HiFi reads) from the Sequel II System, powered by Single Molecule, Real-Time (SMRT) Sequencing technology, you can comprehensively detect variants in a human genome. HiFi reads provide high precision and recall for single nucleotide variants (SNVs), indels, structural variants (SVs), and copy number variants (CNVs), including in difficult-to-map repetitive regions.
The Sequel II and IIe Systems are powered by Single Molecule, Real-Time (SMRT) Sequencing, a technology proven to produce highly accurate long reads, known as HiFi reads, for sequencing data you and your customers can trust.
At AGBT 2017, Mike Schatz from Johns Hopkins University and Cold Spring Harbor Laboratory presented data from sequencing, assembling, and analyzing personalized, phased diploid genomes with either Illumina, 10x Genomics, and PacBio SMRT Sequencing. Compared to the short-read-based methods, PacBio data assembled in large, complete contigs and contained the broadest range of structural variants with the best resolution. Plus: unexpected translocation findings with SMRT Sequencing, validated in follow-up studies.
In this ASHG workshop presentation, Stuart Scott of the Icahn School of Medicine at Mount Sinai, presented on using the PacBio system for amplicon sequencing in pharmacogenomics and clinical genomics workflows. Accurate, phased amplicon sequence for the CYP2D6 gene, for example, has allowed his team to reclassify up to 20% of samples, providing data that’s critical for drug metabolism and dosing. In clinical genomics, Scott presented several case studies illustrating the utility of highly accurate, long-read sequencing for assessing copy number variants and for confirming a suspected medical diagnosis in rare disease patients. He noted that the latest Sequel System…
In this ASHG workshop presentation , Jonas Korlach, CSO of PacBio, walked attendees through recent product updates and the coming technology roadmap. The Sequel System 6.0 release offered major improvements to accuracy, throughput, structural variant calling, and large-insert libraries, he said, showing examples of 35 kb libraries. Looking ahead, Korlach said that the V2 express library preparation product should be available early in 2019, with the new 8M SMRT Cell being introduced sometime later.
In this webinar, Jonas Korlach, Chief Scientific Officer, PacBio provides an overview of the features and the advantages of the new Sequel II System. Kiran Garimella, Senior Computational Scientist, Broad Institute of MIT and Harvard University, describes his work sequencing humans with HiFi reads enabling discovery of structural variants undetectable in short reads. Luke Tallon, Scientific Director, Genomics Resource Center, Institute for Genome Sciences, University of Maryland School of Medicine, covers the GRC’s work on bacterial multiplexing, 16S microbiome profiling, and shotgun metagenomics. Finally, Shane McCarthy, Senior Research Associate, University of Cambridge, focuses on the scaling and affordability of high-quality…
In this ASHG 2020 PacBio Workshop Jonas Korlach, CSO, shares how the new PacBio Sequel IIe System makes highly accurate long-read sequencing easy and affordable so?all scientists can gain comprehensive views of human genomes and transcriptomes. He goes on to provide updates on the applications including human WGS for variant detection, de novo genome assembly, single-cell full-length RNA sequencing, and targeted sequencing using PCR and No-Amp methods.
In this ASHG 2020 CoLab presentation hear Principal Scientists, Aaron Wenger and Elizabeth Tseng share how highly accurate long reads (HiFi reads) provide comprehensive variant detection for both genomes and transcriptomes. Aaron Wenger describes how new improvements in protocols and analysis methods have increased scalability and accuracy of variant calling. As demonstrated in the precisionFDA Truth Challenge V2, HiFi reads (>99% accurate, 15 kb – 20 kb) now outperform short reads for single nucleotide and structural variant calling and match for small indels. This includes calling >30,000 small variants and >10,000 structural variants missed by short reads, many in medically…
In this short video, Aaron Wenger, a Principal Scientist at PacBio, explains what highly accurate long reads, or HiFi reads, are and how they help to detect all variant types including single nucleotide, indels, and structural variants. He goes on to recap the precisionFDA Truth Challenge V2 which used Genome in a Bottle (GIAB) benchmarks to evaluate various sequencing technologies. In the 2020 challenge, when ranked for accuracy, PacBio HiFi reads delivered the highest precision and recall in all categories.
Haplotype-resolved genomes are important for understanding how combinations of variants impact phenotypes. The study of disease, quantitative traits, forensics, and organ donor matching are aided by phased genomes. Phase is commonly resolved using familial data, population-based imputation, or by isolating and sequencing single haplotypes using fosmids, BACs, or haploid tissues. Because these methods can be prohibitively expensive, or samples may not be available, alternative approaches are required. de novo genome assembly with PacBio Single Molecule, Real-Time (SMRT) data produces highly contiguous, accurate assemblies. For non-inbred samples, including humans, the separate resolution of haplotypes results in higher base accuracy and more…
Fast and effective variant calling algorithms have been crucial to the successful application of DNA sequencing in human genetics. In particular, joint calling – in which reads from multiple individuals are pooled to increase power for shared variants – is an important tool for population surveys of variation. Joint calling was applied by the 1000 Genomes Project to identify variants across many individuals each sequenced to low coverage (about 5-fold). This approach successfully found common small variants, but broadly missed structural variants and large indels for which short-read sequencing has limited sensitivity. To support use of large variants in rare…
High-throughput NGS methods are increasingly utilized in the clinical genomics market. However, short-read sequencing data continues to remain challenged by mapping inaccuracies in low complexity regions or regions of high homology and may not provide adequate coverage within GC-rich regions of the genome. Thus, the use of Sanger sequencing remains popular in many clinical sequencing labs as the gold standard approach for orthogonal validation of variants and to interrogate missed regions poorly covered by second-generation sequencing. The use of Sanger sequencing can be less than ideal, as it can be costly for high volume assays and projects. Additionally, Sanger sequencing…
Human genomic variations range in size from single nucleotide substitutions to large chromosomal rearrangements. Sequencing technologies tend to be optimized for detecting particular variant types and sizes. Short reads excel at detecting SNVs and small indels, while long or linked reads are typically used to detect larger structural variants or phase distant loci. Long reads are more easily mapped to repetitive regions, but tend to have lower per-base accuracy, making it difficult to call short variants. The PacBio Sequel System produces two main data types: long continuous reads (up to 100 kbp), generated by single passes over a long template,…
Recent improvements in sequencing chemistry and instrument performance combine to create a new PacBio data type, Single Molecule High-Fidelity reads (HiFi reads). Increased read length and improvement in library construction enables average read lengths of 10-20 kb with average sequence identity greater than 99% from raw single molecule reads. The resulting reads have the accuracy comparable to short read NGS but with 50-100 times longer read length. Here we benchmark the performance of this data type by sequencing and genotyping the Genome in a Bottle (GIAB) HG0002 human reference sample from the National Institute of Standards and Technology (NIST). We…