April 21, 2020  |  

The complete genome sequence and comparative genome analysis of the multi-drug resistant food-borne pathogen Bacillus cereus.

Bacillus cereus is an opportunistic human pathogen causing food-borne gastrointestinal infections and non-gastrointestinal infections worldwide. The strain B. cereus FORC_013 was isolated from fried eel. Its genome was completely sequenced by PacBio technology, analyzed and compared with other complete genome sequences of Bacillus to elucidate the distinct pathogenic features of the strain isolated in South Korea. Genomic analysis revealed pathogenesis and host immune evasion-associated genes encoding tissue-destructive exoenzymes, and pore-forming toxins. In particular, tissue-destructive (hemolysin BL, nonhaemolytic enterotoxins) and cytolytic proteins (cytolysin) were observed in the genome, which damage the plasma membrane of the epithelial cells of the small intestine causing diarrhea in humans. Capsule biosynthesis gene found in both chromosome and plasmid, which might be responsible for protecting the pathogen from the host cell immune defense system after host cell invasion. Additionally, multidrug resistance operon and efflux pumps were identified in the genome, which play a prominent role in multi-antibiotic resistance. Comparative phylogenetic tree analysis of the strain FORC_013 and other B. cereus strains revealed that the closest strains are ATCC 14579 and B4264. This genome data can be used to identify virulence factors that can be applied for the development of novel biomarkers for the rapid detection of this pathogen in foods.Copyright © 2018. Published by Elsevier Inc.


April 21, 2020  |  

Acquired N-Linked Glycosylation Motifs in B-Cell Receptors of Primary Cutaneous B-Cell Lymphoma and the Normal B-Cell Repertoire.

Primary cutaneous follicle center lymphoma (PCFCL) is a rare mature B-cell lymphoma with an unknown etiology. PCFCL resembles follicular lymphoma (FL) by cytomorphologic and microarchitectural criteria. FL B cells are selected for N-linked glycosylation motifs in their B-cell receptors (BCRs) that are acquired during continuous somatic hypermutation. The stimulation of mannosylated BCR by lectins on the tumor microenvironment is therefore a candidate driver in FL pathogenesis. We investigated whether the same mechanism could play a role in PCFCL pathogenesis. Full-length functional variable, diversity, and joining gene sequences of 18 PCFCL and 8 primary cutaneous diffuse large B-cell lymphoma, leg-type were identified by unbiased Anchoring Reverse Transcription of Immunoglobulin Sequences and Amplification by Nested PCR and BCR reconstruction from RNA sequencing data. Low BCR variation demonstrated negligible ongoing somatic hypermutation in PCFCL and primary cutaneous diffuse large B-cell lymphoma, leg-type, and indicated that the PCFCL microarchitecture does not act as a functional germinal center. Similar to FL but in contrast to primary cutaneous diffuse large B-cell lymphoma, leg-type, BCR genes of 15 PCFCLs (83%) had acquired N-linked glycosylation motifs. These motifs were located at the BCR positions converted to N-linked glycosylation motifs in normal B-cell repertoires with low prevalence but mostly at different positions than those found in FL. The cutaneous localization of PCFCL might suggest a role for lectins from commensal skin bacteria in PCFCL lymphomagenesis.Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved.


April 21, 2020  |  

Antibiotic susceptibility of plant-derived lactic acid bacteria conferring health benefits to human.

Lactic acid bacteria (LAB) confer health benefits to human when administered orally. We have recently isolated several species of LAB strains from plant sources, such as fruits, vegetables, flowers, and medicinal plants. Since antibiotics used to treat bacterial infection diseases induce the emergence of drug-resistant bacteria in intestinal microflora, it is important to evaluate the susceptibility of LAB strains to antibiotics to ensure the safety and security of processed foods. The aim of the present study is to determine the minimum inhibitory concentration (MIC) of antibiotics against several plant-derived LAB strains. When aminoglycoside antibiotics, such as streptomycin (SM), kanamycin (KM), and gentamicin (GM), were evaluated using LAB susceptibility test medium (LSM), the MIC was higher than when using Mueller-Hinton (MH) medium. Etest, which is an antibiotic susceptibility assay method consisting of a predefined gradient of antibiotic concentrations on a plastic strip, is used to determine the MIC of antibiotics world-wide. In the present study, we demonstrated that Etest was particularly valuable while testing LAB strains. We also show that the low susceptibility of the plant-derived LAB strains against each antibiotic tested is due to intrinsic resistance and not acquired resistance. This finding is based on the whole-genome sequence information reflecting the horizontal spread of the drug-resistance genes in the LAB strains.


April 21, 2020  |  

Complete genome sequence and evolution analysis of Psychrobacter sp. YP14 from Gammaridea Gastrointestinal Microbiota of Yap Trench

Psychrobacter sp. YP14, a moderately psychrophilic bacterium belonging to the class Gammaproteobacteria, was isolated from Gammaridea Gastrointestinal Microbiota of Yap Trench. The strain has one circular chromosome of 2,895,311 bp with a 44.66% GC content, consisting of 2333 protein-coding genes, 53 tRNA genes and 9 rRNA genes. Four plasmids were completely assembled and their sizes were 13,712 bp, 19711 bp, 36270 bp, 8194 bp, respectively. In particular, a putative open reading frame (ORF) for dienelactone hydrolase (DLH) related to degradation of chlorinated aromatic hydrocarbons. To get an better understanding of the evolution of Psychrobacter sp. YP14 in this genus, six Psychrobacter strains (G, PRwf-1, DAB_AL43B, AntiMn-1,P11G5, P2G3), with publicly available complete genome, were selected and comparative genomics analysis were performed among them. The closest phylogenetic relationship was identified between strains G and K5 based on 16s gene and ANI (average nucleotide identity) values. Analysis of the pan-genome structure found that YP14 has fewer COG clusters associated with transposons and prophage which indicates fewer sequence rearrangements compared with PRwf-1. Besides, stress response-related genes of strain YP14 demonstrates that it has less strategies to cope with extreme environment, which is consistent with its intestinal habitat. The difference of metabolism and strategies coped with stress response of YP14 are more conducive to the study of microbial survival and metabolic mechanisms in deep sea environment.


April 21, 2020  |  

Detection of transferable oxazolidinone resistance determinants in Enterococcus faecalis and Enterococcus faecium of swine origin in Sichuan Province, China.

The aim of this study was to detect the transferable oxazolidinone resistance determinants (cfr, optrA and poxtA) in E. faecalis and E. faecium of swine origin in Sichuan Province, China.A total of 158 enterococci strains (93 E. faecalis and 65 E. faecium) isolated from 25 large-scale swine farms were screened for the presence of cfr, optrA and poxtA by PCR. The genetic environments of cfr, optrA and poxtA were characterized by whole genome sequencing. Transfer of oxazolidinone resistance determinants was determined by conjugation or electrotransformation experiments.The transferable oxazolidinone resistance determinants, cfr, optrA and poxtA, were detected in zero, six, and one enterococci strains, respectively. The poxtA in one E. faecalis strain was located on a 37,990 bp plasmid, which co-harbored fexB, cat, tet(L) and tet(M), and could be conjugated to E. faecalis JH2-2. One E. faecalis strain harbored two different OptrA variants, including one variant with a single substitution, Q219H, which has not been reported previously. Two optrA-carrying plasmids, pC25-1, with a size of 45,581 bp, and pC54, with a size of 64,500 bp, shared a 40,494 bp identical region that contained genetic context IS1216E-fexA-optrA-erm(A)-IS1216E, which could be electrotransformed into Staphylococcus aureus. Four different chromosomal optrA gene clusters were found in five strains, in which optrA was associated with Tn554 or Tn558 that were inserted into the radC gene.Our study highlights the fact that mobile genetic elements, such as plasmids, IS1216E, Tn554 and Tn558, may facilitate the horizontal transmission of optrA or poxtA.Copyright © 2019. Published by Elsevier Ltd.


April 21, 2020  |  

Complete genome sequence provides insights into the quorum sensing-related spoilage potential of Shewanella baltica 128 isolated from spoiled shrimp.

Shewanella baltica 128 is a specific spoilage organism (SSO) isolated from the refrigerated shrimp that results in shrimp spoilage. This study reported the complete genome sequencing of this strain, with the primary annotations associated with amino acid transport and metabolism (8.66%), indicating that S. baltica 128 has good potential for degrading proteins. In vitro experiments revealed Shewanella baltica 128 could adapt to the stress conditions by regulating its growth and biofilm formation. Genes that related to the spoilage-related metabolic pathways, including trimethylamine metabolism (torT), sulfur metabolism (cysM), putrescine metabolism (speC), biofilm formation (rpoS) and serine protease production (degS), were identified. Genes (LuxS, pfs, LuxR and qseC) that related to the specific QS system were also identified. Complete genome sequence of S. baltica 128 provide insights into the QS-related spoilage potential, which might provide novel information for the development of new approaches for spoilage detection and prevention based on QS target.Copyright © 2019. Published by Elsevier Inc.


April 21, 2020  |  

Large-scale ruminant genome sequencing provides insights into their evolution and distinct traits.

The ruminants are one of the most successful mammalian lineages, exhibiting morphological and habitat diversity and containing several key livestock species. To better understand their evolution, we generated and analyzed de novo assembled genomes of 44 ruminant species, representing all six Ruminantia families. We used these genomes to create a time-calibrated phylogeny to resolve topological controversies, overcoming the challenges of incomplete lineage sorting. Population dynamic analyses show that population declines commenced between 100,000 and 50,000 years ago, which is concomitant with expansion in human populations. We also reveal genes and regulatory elements that possibly contribute to the evolution of the digestive system, cranial appendages, immune system, metabolism, body size, cursorial locomotion, and dentition of the ruminants. Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.


April 21, 2020  |  

Rapid transcriptional responses to serum exposure are associated with sensitivity and resistance to antibody-mediated complement killing in invasive Salmonella Typhimurium ST313

Background: Salmonella Typhimurium ST313 exhibits signatures of adaptation to invasive human infection, including higher resistance to humoral immune responses than gastrointestinal isolates. Full resistance to antibody-mediated complement killing (serum resistance) among nontyphoidal Salmonellae is uncommon, but selection of highly resistant strains could compromise vaccine-induced antibody immunity. Here, we address the hypothesis that serum resistance is due to a distinct genotype or transcriptome response in S. Typhimurium ST313.


April 21, 2020  |  

Complete Genome Sequence of Enterococcus faecalis Strain SGAir0397, Isolated from a Tropical Air Sample Collected in Singapore.

Enterococcus faecalis strain SGAir0397 was isolated from a tropical air sample collected in Singapore. Its genome was assembled using single-molecule real-time sequencing data and comprises one circular chromosome with a length of 2.69 Mbp. The genome contains 2,595 protein-coding genes, 59 tRNAs, and 12 rRNAs.Copyright © 2019 Purbojati et al.


April 21, 2020  |  

Complete Genome Sequence of Citrobacter rodentium Strain DBS100.

Citrobacter rodentium strain DBS100 causes an infection of the intestines in mice. It provides an important model for human gastrointestinal pathogens, such as enteropathogenic and enterohemorrhagic Escherichia coli, which cause life-threatening infections. To identify the genetic determinants that are common across the enteropathogenic bacteria, we sequenced the DBS100 genome.Copyright © 2019 Popov et al.


April 21, 2020  |  

Draft Genome Sequence of Mesosutterella multiformis JCM 32464T, a Member of the Family Sutterellaceae, Isolated from Human Feces.

Here, we report the draft genome sequence of Mesosutterella multiformis JCM 32464T, a new member of the family Sutterellaceae that was isolated from human feces. The genome assembly comprised 2,621,983?bp, with a G+C content of 56.9%. This genomic analysis will be useful for understanding the metabolic activities of this asaccharolytic bacterium.Copyright © 2019 Ikeyama et al.


April 21, 2020  |  

Increased prevalence of Escherichia coli strains from food carrying blaNDM and mcr-1-bearing plasmids that structurally resemble those of clinical strains, China, 2015 to 2017.

Introduction: Emergence of resistance determinants of blaNDM and mcr-1 has undermined the antimicrobial effectiveness of the last line drugs carbapenems and colistin. Aim: This work aimed to assess the prevalence of blaNDM and mcr-1 in E. coli strains collected from food in Shenzhen, China, during the period 2015 to 2017. Methods: Multidrug-resistant E. coli strains were isolated from food samples. Plasmids encoding mcr-1 or blaNDM genes were characterised and compared with plasmids found in clinical isolates.ResultsAmong 1,166 non-repeated cephalosporin-resistant E. coli strains isolated from 2,147 food samples, 390 and 42, respectively, were resistant to colistin and meropenem, with five strains being resistant to both agents. The rate of resistance to colistin increased significantly (p?


April 21, 2020  |  

Comparative Transcriptomic Profiling of Yersinia enterocolitica O:3 and O:8 Reveals Major Expression Differences of Fitness- and Virulence-Relevant Genes Indicating Ecological Separation.

Yersinia enterocolitica is a zoonotic pathogen and an important cause of bacterial gastrointestinal infections in humans. Large-scale population genomic analyses revealed genetic and phenotypic diversity of this bacterial species, but little is known about the differences in the transcriptome organization, small RNA (sRNA) repertoire, and transcriptional output. Here, we present the first comparative high-resolution transcriptome analysis of Y. enterocolitica strains representing highly pathogenic phylogroup 2 (serotype O:8) and moderately pathogenic phylogroup 3 (serotype O:3) grown under four infection-relevant conditions. Our transcriptome sequencing (RNA-seq) approach revealed 1,299 and 1,076 transcriptional start sites and identified strain-specific sRNAs that could contribute to differential regulation among the phylogroups. Comparative transcriptomics further uncovered major gene expression differences, in particular, in the temperature-responsive regulon. Multiple virulence-relevant genes are differentially regulated between the two strains, supporting an ecological separation of phylogroups with certain niche-adapted properties. Strong upregulation of the ystA enterotoxin gene in combination with constitutive high expression of cell invasion factor InvA further showed that the toxicity of recent outbreak O:3 strains has increased. Overall, our report provides new insights into the specific transcriptome organization of phylogroups 2 and 3 and reveals gene expression differences contributing to the substantial phenotypic differences that exist between the lineages. IMPORTANCE Yersinia enterocolitica is a major diarrheal pathogen and is associated with a large range of gut-associated diseases. Members of this species have evolved into different phylogroups with genotypic variations. We performed the first characterization of the Y. enterocolitica transcriptional landscape and tracked the consequences of the genomic variations between two different pathogenic phylogroups by comparing their RNA repertoire, promoter usage, and expression profiles under four different virulence-relevant conditions. Our analysis revealed major differences in the transcriptional outputs of the closely related strains, pointing to an ecological separation in which one is more adapted to an environmental lifestyle and the other to a mostly mammal-associated lifestyle. Moreover, a variety of pathoadaptive alterations, including alterations in acid resistance genes, colonization factors, and toxins, were identified which affect virulence and host specificity. This illustrates that comparative transcriptomics is an excellent approach to discover differences in the functional output from closely related genomes affecting niche adaptation and virulence, which cannot be directly inferred from DNA sequences.


April 21, 2020  |  

Diverse Vectors and Mechanisms Spread New Delhi Metallo-ß-Lactamases among Carbapenem-Resistant Enterobacteriaceae in the Greater Boston Area.

New Delhi metallo-beta-lactamases (NDMs) are an uncommon but emerging cause of carbapenem resistance in the United States. Genomic factors promoting their domestic spread remain poorly characterized. A prospective genomic surveillance program among Boston-area hospitals identified multiple new occurrences of NDM-carrying strains of Escherichia coli and Enterobacter cloacae complex in inpatient and outpatient settings, representing the first occurrences of NDM-mediated resistance since initiating genomic surveillance in 2011. Cases included domestic patients with no international exposures. PacBio sequencing of isolates identified strain characteristics, resistance genes, and the complement of mobile vectors mediating spread. Analyses revealed a common 3,114-bp region containing the blaNDM gene, with carriage of this conserved region among unique strains by diverse transposon and plasmid backbones. Functional studies revealed a broad capacity for blaNDM transmission by conjugation, transposition, and complex interplasmid recombination events. NDMs represent a rapidly spreading form of drug resistance that can occur in inpatient and outpatient settings and in patients without international exposures. In contrast to Tn4401-based spread of Klebsiella pneumoniae carbapenemases (KPCs), diverse transposable elements mobilize NDM enzymes, commonly with other resistance genes, enabling naive strains to acquire multi- and extensively drug-resistant profiles with single transposition or plasmid conjugation events. Genomic surveillance provides effective means to rapidly identify these gene-level drivers of resistance and mobilization in order to inform clinical decisions to prevent further spread.Copyright © 2019 American Society for Microbiology.


April 21, 2020  |  

Sensitivity to the two peptide bacteriocin plantaricin EF is dependent on CorC, a membrane-bound, magnesium/cobalt efflux protein.

Lactic acid bacteria produce a variety of antimicrobial peptides known as bacteriocins. Most bacteriocins are understood to kill sensitive bacteria through receptor-mediated disruptions. Here, we report on the identification of the Lactobacillus plantarum plantaricin EF (PlnEF) receptor. Spontaneous PlnEF-resistant mutants of the PlnEF-indicator strain L. plantarum NCIMB 700965 (LP965) were isolated and confirmed to maintain cellular ATP levels in the presence of PlnEF. Genome comparisons resulted in the identification of a single mutated gene annotated as the membrane-bound, magnesium/cobalt efflux protein CorC. All isolates contained a valine (V) at position 334 instead of a glycine (G) in a cysteine-ß-synthase domain at the C-terminal region of CorC. In silico template-based modeling of this domain indicated that the mutation resides in a loop between two ß-strands. The relationship between PlnEF, CorC, and metal homeostasis was supported by the finding that PlnEF-resistance was lost when PlnEF was applied together with high concentrations of Mg2+ , Co2+ , Zn2+ , or Cu2+ . Lastly, PlnEF sensitivity was increased upon heterologous expression of LP965 corC but not the G334V CorC mutant in the PlnEF-resistant strain Lactobacillus casei BL23. These results show that PlnEF kills sensitive bacteria by targeting CorC. © 2019 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.