In this webinar, Dr. Ashby gives attendees a brief update on PacBio’s metagenomics solutions on the Sequel II System. Then, Dr. Ma, University of Maryland School of Medicine, discusses her work using long read sequencing to identify high-resolution microbial biomarkers associated with leaky gut syndrome in premature infants. Finally, Dr. Weinstock, The Jackson Laboratory, talks about the potential of highly accurate long reads to enable strain-level resolution of the human gut microbiome by resolving intraspecies variation in multiple copies of the 16S gene.
For the first time, full-length 16S rRNA sequencing method was applied to disclose the bacterial species and communities of a full-scale wastewater treatment plant using an anaerobic/anoxic/oxic (A/A/O) process in Wuhan, China. The compositions of the bacteria at phylum and class levels in the activated sludge were similar to which revealed by Illumina Miseq sequencing. At genus and species levels, third-generation sequencing showed great merits and accuracy. Typical functional taxa classified to ammonia-oxidizing bacteria (AOB), nitrite-oxidizing bacteria (NOB), denitrifying bacteria (DB), anaerobic ammonium oxidation bacteria (ANAMMOXB) and polyphosphate-accumulating organisms (PAOs) were presented, which were Nitrosomonas (1.11%), Nitrospira (3.56%), Pseudomonas (3.88%),…
Two Marinobacter sp. NP-4 and NP-6 were isolated from a deep oceanic basaltic crust at North Pond, located at the western flank of the Mid-Atlantic Ridge. These two strains are capable of using multiple carbon sources such as acetate, succinate, glucose and sucrose while take oxygen as a primary electron acceptor. The strain NP-4 is also able to grow anaerobically under 20?MPa, with nitrate as the electron acceptor, thus represents a piezotolerant. To explore the metabolic potentials of Marinobacter sp. NP-4 and NP-6, the complete genome of NP-4 and close-to-complete genome of NP-6 were sequenced. The genome of NP-4 contains…
The genus Pseudomonas is highly metabolically diverse and has colonized a wide range of ecological niches. The strain Pseudomonas sp. DMSP-1 was isolated from Arctic seawater (Kongsfjorden, Svalbard) using dimethylsulfoniopropionate (DMSP) as the sole carbon source. To better understand its role in the Arctic coastal ecosystem, the genome of Pseudomonas sp. strain DMSP-1 was completely sequenced. The genome contained a circular chromosome of 6,282,445?bp with an average GC content of 60.01?mol%. A total of 5510 protein coding genes, 70 tRNA genes and 19 rRNA genes were obtained. However, no genes encoding known enzymes associated with DMSP catabolism were identified in…
Pseudoalteromonas strains are widely distributed in the marine environment and most have attracted considerable interest owing to their ability to synthesize biologically active metabolites. In this study, we report and describe the genome sequence of Pseudoalteromonas sp. MEBiC 03485, isolated from the deep-sea sediment of Pacific Ocean at a depth of 2000?m. The complete genome consisted of three contigs with a total genome size of 4,167,407?bp and a GC content of 40.76?l%, and was predicted to contain 4194 protein-coding genes and 131 non-coding RNA genes. The strain MEBiC 03485 genome was also shown to contain genes for diverse metabolic pathways.…
Chemical defense against predators is widespread in natural ecosystems. Occasionally, taxonomically distant organisms share the same defense chemical. Here, we describe an unusual tripartite marine symbiosis, in which an intracellular bacterial symbiont (“Candidatus Endobryopsis kahalalidefaciens”) uses a diverse array of biosynthetic enzymes to convert simple substrates into a library of complex molecules (the kahalalides) for chemical defense of the host, the alga Bryopsis sp., against predation. The kahalalides are subsequently hijacked by a third partner, the herbivorous mollusk Elysia rufescens, and employed similarly for defense. “Ca E. kahalalidefaciens” has lost many essential traits for free living and acts as a…
A bacterial strain designated as P08T was isolated from laboratory tap water during a water quality assessment in University of Malaya, Malaysia. The strain was a Gram-negative, rod-shaped, nonmotile, and aerobic bacterium. Complete genome of P08T comprised of a 2,820,660 bp chromosome with a G + C content of 36.43%. Both 16S rRNA phylogeny and phylogenetic tree inferred from the core gene matrix demonstrated that P08T formed a hitherto unknown subline within the family Neisseriaceae. Ortho average nucleotide identity (OrthoANI) values and the percentage of conserved proteins (POCP) calculated from complete genome sequence indicated low relatedness between P08T and its phylogenetic neighbors. Respiratory…
The streamlining hypothesis is generally used to explain the genomic reduction events related to the small genome size of free-living bacteria like marine bacteria SAR11. However, our current understanding of the correlation between bacterial genome size and environmental adaptation relies on too few species. It is still unclear whether there are other paths leading to genomic reduction in free-living bacteria. The genome size of marine free-living bacteria of the genus Idiomarina belonging to the order Alteromonadales (Gammaproteobacteria) is much smaller than the size of related genomes from bacteria in the same order. Comparative genomic and physiological analyses showed that the…
Candidatus Thioglobus sp.textquotedblright strain NP1 is an open-ocean isolate from the SUP05 clade of Gammaproteobacteria. Whole-genome comparisons of strain NP1 to other sequenced isolates from the SUP05 clade indicate that it represents a new species of SUP05 that lacks the ability to fix inorganic carbon using the Calvin-Benson-Bassham cycle.
Algal polysaccharides are an important bacterial nutrient source and central component of marine food webs. However, cellular and ecological aspects concerning the bacterial degradation of polysaccharide mixtures, as presumably abundant in natural habitats, are poorly understood. Here, we contextualize marine polysaccharide mixtures and their bacterial utilization in several ways using the model bacterium Alteromonas macleodii 83-1, which can degrade multiple algal polysaccharides and contributes to polysaccharide degradation in the oceans. Transcriptomic, proteomic and exometabolomic profiling revealed cellular adaptations of A. macleodii 83-1 when degrading a mix of laminarin, alginate and pectin. Strain 83-1 exhibited substrate prioritization driven by catabolite repression,…
Colwellia sp. Arc7-D, a psychrophilic H2O2-resisitant bacterium, was isolated from Arctic Ocean sediment. Here we describe the complete genome of Colwellia sp. Arc7-D. The genome has one circular chromosome of 4,305,442?bp (37.67?mol%?G?+?C content), consisting of 3526 coding genes, 77 tRNA genes, as well as five rRNA operons as 16S–23S-5S rRNA and one rRNA operon as 16S-23S-5S-5S. According to KEGG analysis, strain Arc7-D encodes 23 genes related with antioxidant activity including superoxide dismutase, glutathione peroxidase, glutathione reductase and catalase. However, many additional genes affiliated with anti-oxidative stress were also identified, such as aconitase, thioredoxin and ascorbic acid.
Pseudoalteromonas is widely distributed in the marine environments and the biofilms formed by Pseudoalteromonas promote settlement of many species of invertebrates. Here, we show the complete genome of Pseudoalteromonas atlantica ECSMB14104, which was isolated from biofilms formed in the East China Sea and exhibited inducing activity on the Mytilus coruscus settlement. Complete genome of this strain containsa total of 3325 genes and the GC content of 41.02%. This genomic information is contributed to molecular mechanism of P. atlantica ECSMB14104 regulating mussel settlement.
Members of the genus Catenovulum are recognized for their ability to degrade algal biomass. Here we report the complete genome of Cantenovulum–like strain CCB-QB4, an agarolytic bacterium isolated from the coastal area of Penang, Malaysia. The sequenced genome is composed of a 5,663,044?bp circular chromosome and a 208,085?bp circular plasmid. It contained 4409 protein coding and 83 RNA genes, including 62 tRNAs and 21 rRNAs. The genome of CCB-QB4 contains many agarases, which correlate with the high capacity of the strain to degrade agar. Genome sequencing of CCB-QB4 reveals gene candidates of potential interest in enzymatic industries or applications in…
We present the genome sequence of Saccharospirillum mangrovi HK-33T, isolated from a mangrove sediment sample in Haikou, China. The complete genome of S. mangrovi HK-33T consisted of a single-circular chromosome with the size of 3,686,911 bp as well as an average G?+?C content of 57.37%, and contained 3,383 protein-coding genes, 4 operons of 16S-23S-5S rRNA genes, and 52 tRNA genes. Genomic annotation indicated that the genome of S. mangrovi HK-33T had many genes related to oligosaccharide and polysaccharide degradation and utilization of polyhydroxyalkanoate. For nitrogen cycle, genes encoding nitrate and nitrite reductase, glutamate dehydrogenase, glutamate synthase, and glutamine synthetase could be…
Prokaryotic DNA contains three types of methylation: N6-methyladenine, N4-methylcytosine and 5-methylcytosine. The lack of tools to analyse the frequency and distribution of methylated residues in bacterial genomes has prevented a full understanding of their functions. Now, advances in DNA sequencing technology, including single-molecule, real-time sequencing and nanopore-based sequencing, have provided new opportunities for systematic detection of all three forms of methylated DNA at a genome-wide scale and offer unprecedented opportunities for achieving a more complete understanding of bacterial epigenomes. Indeed, as the number of mapped bacterial methylomes approaches 2,000, increasing evidence supports roles for methylation in regulation of gene expression,…