June 1, 2021  |  

Genome and transcriptome of the refeneration-competent flatworm, Macrostomum lignano

The free-living flatworm, Macrostomum lignano, much like its better known planarian relative, Schmidtea mediterranea, has an impressive regenerative capacity. Following injury, this species has the ability to regenerate almost an entirely new organism. This is attributable to the presence of an abundant somatic stem cell population, the neoblasts. These cells are also essential for the ongoing maintenance of most tissues, as their loss leads to irreversible degeneration of the animal. This set of unique properties makes a subset of flatworms attractive organisms for studying the evolution of pathways involved in tissue self-renewal, cell fate specification, and regeneration. The use of these organisms as models, however, is hampered by the lack of a well-assembled and annotated genome sequences, fundamental to modern genetic and molecular studies. Here we report the genomic sequence of Macrostomum lignano and an accompanying characterization of its transcriptome. The genome structure of M. lignano is remarkably complex, with ~75% of its sequence being comprised of simple repeats and transposon sequences. This has made high quality assembly from Illumina reads alone impossible (N50=222 bp). We therefore generated 130X coverage by long sequencing reads from the PacBio platform to create a substantially improved assembly with an N50 of 64 Kbp. We complemented the reference genome with an assembled and annotated transcriptome, and used both of these datasets in combination to probe gene expression patterns during regeneration, examining pathways important to stem cell function. As a whole, our data will provide a crucial resource for the community for the study not only of invertebrate evolution and phylogeny but also of regeneration and somatic pluripotency.


April 21, 2020  |  

Early Sex-chromosome Evolution in the Diploid Dioecious Plant Mercurialis annua.

Suppressed recombination allows divergence between homologous sex chromosomes and the functionality of their genes. Here, we reveal patterns of the earliest stages of sex-chromosome evolution in the diploid dioecious herb Mercurialis annua on the basis of cytological analysis, de novo genome assembly and annotation, genetic mapping, exome resequencing of natural populations, and transcriptome analysis. The genome assembly contained 34,105 expressed genes, of which 10,076 were assigned to linkage groups. Genetic mapping and exome resequencing of individuals across the species range both identified the largest linkage group, LG1, as the sex chromosome. Although the sex chromosomes of M. annua are karyotypically homomorphic, we estimate that about a third of the Y chromosome has ceased recombining, containing 568 transcripts and spanning 22.3 cM in the corresponding female map. Nevertheless, we found limited evidence for Y-chromosome degeneration in terms of gene loss and pseudogenization, and most X- and Y-linked genes appear to have diverged in the period subsequent to speciation between M. annua and its sister species M. huetii which shares the same sex-determining region. Taken together, our results suggest that the M. annua Y chromosome has at least two evolutionary strata: a small old stratum shared with M. huetii, and a more recent larger stratum that is probably unique to M. annua and that stopped recombining about one million years ago. Patterns of gene expression within the non-recombining region are consistent with the idea that sexually antagonistic selection may have played a role in favoring suppressed recombination.Copyright © 2019, Genetics.


April 21, 2020  |  

Divergent evolution in the genomes of closely related lacertids, Lacerta viridis and L. bilineata, and implications for speciation.

Lacerta viridis and Lacerta bilineata are sister species of European green lizards (eastern and western clades, respectively) that, until recently, were grouped together as the L. viridis complex. Genetic incompatibilities were observed between lacertid populations through crossing experiments, which led to the delineation of two separate species within the L. viridis complex. The population history of these sister species and processes driving divergence are unknown. We constructed the first high-quality de novo genome assemblies for both L. viridis and L. bilineata through Illumina and PacBio sequencing, with annotation support provided from transcriptome sequencing of several tissues. To estimate gene flow between the two species and identify factors involved in reproductive isolation, we studied their evolutionary history, identified genomic rearrangements, detected signatures of selection on non-coding RNA, and on protein-coding genes.Here we show that gene flow was primarily unidirectional from L. bilineata to L. viridis after their split at least 1.15 million years ago. We detected positive selection of the non-coding repertoire; mutations in transcription factors; accumulation of divergence through inversions; selection on genes involved in neural development, reproduction, and behavior, as well as in ultraviolet-response, possibly driven by sexual selection, whose contribution to reproductive isolation between these lacertid species needs to be further evaluated.The combination of short and long sequence reads resulted in one of the most complete lizard genome assemblies. The characterization of a diverse array of genomic features provided valuable insights into the demographic history of divergence among European green lizards, as well as key species differences, some of which are candidates that could have played a role in speciation. In addition, our study generated valuable genomic resources that can be used to address conservation-related issues in lacertids. © The Author(s) 2018. Published by Oxford University Press.


April 21, 2020  |  

Genome of the Komodo dragon reveals adaptations in the cardiovascular and chemosensory systems of monitor lizards.

Monitor lizards are unique among ectothermic reptiles in that they have high aerobic capacity and distinctive cardiovascular physiology resembling that of endothermic mammals. Here, we sequence the genome of the Komodo dragon Varanus komodoensis, the largest extant monitor lizard, and generate a high-resolution de novo chromosome-assigned genome assembly for V. komodoensis using a hybrid approach of long-range sequencing and single-molecule optical mapping. Comparing the genome of V. komodoensis with those of related species, we find evidence of positive selection in pathways related to energy metabolism, cardiovascular homoeostasis, and haemostasis. We also show species-specific expansions of a chemoreceptor gene family related to pheromone and kairomone sensing in V. komodoensis and other lizard lineages. Together, these evolutionary signatures of adaptation reveal the genetic underpinnings of the unique Komodo dragon sensory and cardiovascular systems, and suggest that selective pressure altered haemostasis genes to help Komodo dragons evade the anticoagulant effects of their own saliva. The Komodo dragon genome is an important resource for understanding the biology of monitor lizards and reptiles worldwide.


April 21, 2020  |  

SMRT long reads and Direct Label and Stain optical maps allow the generation of a high-quality genome assembly for the European barn swallow (Hirundo rustica rustica).

The barn swallow (Hirundo rustica) is a migratory bird that has been the focus of a large number of ecological, behavioral, and genetic studies. To facilitate further population genetics and genomic studies, we present a reference genome assembly for the European subspecies (H. r. rustica).As part of the Genome10K effort on generating high-quality vertebrate genomes (Vertebrate Genomes Project), we have assembled a highly contiguous genome assembly using single molecule real-time (SMRT) DNA sequencing and several Bionano optical map technologies. We compared and integrated optical maps derived from both the Nick, Label, Repair, and Stain technology and from the Direct Label and Stain (DLS) technology. As proposed by Bionano, DLS more than doubled the scaffold N50 with respect to the nickase. The dual enzyme hybrid scaffold led to a further marginal increase in scaffold N50 and an overall increase of confidence in the scaffolds. After removal of haplotigs, the final assembly is approximately 1.21 Gbp in size, with a scaffold N50 value of more than 25.95 Mbp.This high-quality genome assembly represents a valuable resource for future studies of population genetics and genomics in the barn swallow and for studies concerning the evolution of avian genomes. It also represents one of the very first genomes assembled by combining SMRT long-read sequencing with the new Bionano DLS technology for scaffolding. The quality of this assembly demonstrates the potential of this methodology to substantially increase the contiguity of genome assemblies.


April 21, 2020  |  

Sequence properties of certain GC rich avian genes, their origins and absence from genome assemblies: case studies.

More and more eukaryotic genomes are sequenced and assembled, most of them presented as a complete model in which missing chromosomal regions are filled by Ns and where a few chromosomes may be lacking. Avian genomes often contain sequences with high GC content, which has been hypothesized to be at the origin of many missing sequences in these genomes. We investigated features of these missing sequences to discover why some may not have been integrated into genomic libraries and/or sequenced.The sequences of five red jungle fowl cDNA models with high GC content were used as queries to search publicly available datasets of Illumina and Pacbio sequencing reads. These were used to reconstruct the leptin, TNFa, MRPL52, PCP2 and PET100 genes, all of which are absent from the red jungle fowl genome model. These gene sequences displayed elevated GC contents, had intron sizes that were sometimes larger than non-avian orthologues, and had non-coding regions that contained numerous tandem and inverted repeat sequences with motifs able to assemble into stable G-quadruplexes and intrastrand dyadic structures. Our results suggest that Illumina technology was unable to sequence the non-coding regions of these genes. On the other hand, PacBio technology was able to sequence these regions, but with dramatically lower efficiency than would typically be expected.High GC content was not the principal reason why numerous GC-rich regions of avian genomes are missing from genome assembly models. Instead, it is the presence of tandem repeats containing motifs capable of assembling into very stable secondary structures that is likely responsible.


April 21, 2020  |  

Comparative analysis of the chicken IFITM locus by targeted genome sequencing reveals evolution of the locus and positive selection in IFITM1 and IFITM3.

The interferon-induced transmembrane (IFITM) protein family comprises a class of restriction factors widely characterised in humans for their potent antiviral activity. Their biological activity is well documented in several animal species, but their genetic variation and biological mechanism is less well understood, particularly in avian species.Here we report the complete sequence of the domestic chicken Gallus gallus IFITM locus from a wide variety of chicken breeds to examine the detailed pattern of genetic variation of the locus on chromosome 5, including the flanking genes ATHL1 and B4GALNT4. We have generated chIFITM sequences from commercial breeds (supermarket-derived chicken breasts), indigenous chickens from Nigeria (Nsukka) and Ethiopia, European breeds and inbred chicken lines from the Pirbright Institute, totalling of 206 chickens. Through mapping of genetic variants to the latest chIFITM consensus sequence our data reveal that the chIFITM locus does not show structural variation in the locus across the populations analysed, despite spanning diverse breeds from different geographic locations. However, single nucleotide variants (SNVs) in functionally important regions of the proteins within certain groups of chickens were detected, in particular the European breeds and indigenous birds from Ethiopia and Nigeria. In addition, we also found that two out of four SNVs located in the chIFITM1 (Ser36 and Arg77) and chIFITM3 (Val103) proteins were simultaneously under positive selection.Together these data suggest that IFITM genetic variation may contribute to the capacities of different chicken populations to resist virus infection.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.