Genomic instability is one of the hallmarks of cancer, leading to widespread copy number variations, chromosomal fusions, and other structural variations. The breast cancer cell line SK-BR-3 is an important model for HER2+ breast cancers, which are among the most aggressive forms of the disease and affect one in five cases. Through short read sequencing, copy number arrays, and other technologies, the genome of SK-BR-3 is known to be highly rearranged with many copy number variations, including an approximately twenty-fold amplification of the HER2 oncogene. However, these technologies cannot precisely characterize the nature and context of the identified genomic events…
Transcriptome sequencing has proven to be an important tool for understanding the biological changes in cancer genomes including the consequences of structural rearrangements. Short read sequencing has been the method of choice, as the high throughput at low cost allows for transcript quantitation and the detection of even rare transcripts. However, the reads are generally too short to reconstruct complete isoforms. Conversely, long-read approaches can provide unambiguous full-length isoforms, but lower throughput has complicated quantitation and high RNA input requirements has made working with cancer samples challenging. Recently, the COLO 829 cell line was sequenced to 50-fold coverage with PacBio…
In this ASHG workshop presentation , Jonas Korlach, CSO of PacBio, walked attendees through recent product updates and the coming technology roadmap. The Sequel System 6.0 release offered major improvements to accuracy, throughput, structural variant calling, and large-insert libraries, he said, showing examples of 35 kb libraries. Looking ahead, Korlach said that the V2 express library preparation product should be available early in 2019, with the new 8M SMRT Cell being introduced sometime later.
In this ASHG workshop presentation, Elizabeth Tseng of PacBio showed how the Iso-Seq method can be used to discover disease-associated alternative splicing. Because this approach to isoform sequencing yields accurate, full-length transcripts requiring no assembly, it’s ideal for disease studies that need a more comprehensive picture of alternative splicing activity. Tseng offered several published examples of how the Iso-Seq method has been used for everything from single-gene studies to whole-transcriptome studies, and also detailed how the latest Sequel System chemistry recovers more genes and produces more usable reads.
Long-read mRNA sequencing such as PacBio’s Iso-Seq method offer high-throughput transcriptome profiling that circumvents the transcript assembly problem by sequencing full-length cDNA. The Iso-Seq method has emerged as the most reliable technology for fully characterizing isoforms and, in turn, help shed light on underlying disease mechanisms. Here, we have utilized the Iso-Seq method to sequence an Alzheimer’s disease whole brain?sample. This is a devastating neurodegenerative disease that affects ~44 million people worldwide, making it the most common form of dementia. Studies looking into disease mechanism have shown that changes in gene expression due to alternative splicing likely contribute to the…
Comprehensive molecular characterization of myriad somatic alterations and aberrant gene expressions at personal level is key to precision cancer therapy, yet limited by current short-read sequencing technology, individualized catalog of complete genomic and transcriptomic features is thus far elusive. Here, we integrated second- and third-generation sequencing platforms to generate a multidimensional dataset on a patient affected by metastatic epithelial ovarian cancer. Whole-genome and hybrid transcriptome dissection captured global genetic and transcriptional variants at previously unparalleled resolution. Particularly, single-molecule mRNA sequencing identified a vast array of unannotated transcripts, novel long noncoding RNAs and gene chimeras, permitting accurate determination of transcription start,…
Understanding early gene expression in zebrafish embryos is a prerequisite for developmental biology research. In this study, 1,629,447 polymerase reads were obtained from the unfertilized eggs of zebrafish via full-length transcriptome sequencing using the PacBio RS II platform first. Then, 102,920 unique isoforms were obtained by correction, clustering and comparison with the zebrafish genome. 12,782 genes in the genome were captured, accounting for 39.71% of the all annotated genes. Approximately 62.27% of the 12,782 genes have been alternatively spliced. GO and KEGG annotations revealed that the unfertilized eggs primarily stored genes that participate in RNA processing and nuclear protein complex…
Pyropia haitanensis is a high-yield commercial seaweed in China. Pyropia haitanensis farms often suffer from problems such as severe germplasm degeneration, while the mechanisms underlying resistance to abiotic stresses remain unknown because of lacking genomic information. Although many previous studies focused on using next-generation sequencing (NGS) technologies, the short-read sequences generated by NGS generally prevent the assembly of full-length transcripts, and then limit screening functional genes. In the present study, which was based on hybrid sequencing (NGS and single-molecular real-time sequencing) of the P. haitanensis thallus transcriptome, we obtained high-quality full-length transcripts with a mean length of 2998 bp and…
Olive (Olea europaea) is a rich source of valuable bioactive polyphenols, which has attracted widespread interest. In this study, we combined targeted metabolome, Pacbio ISOseq transcriptome, and Illumina RNA-seq transcriptome to investigate the association between polyphenols and gene expression in the developing olive fruits and leaves. A total of 12 main polyphenols were measured, and 122 transcripts of 17 gene families, 101 transcripts of 9 gene families, and 106 transcripts of 6 gene families that encode for enzymes involved in flavonoid, oleuropein, and hydroxytyrosol biosynthesis were separately identified. Additionally, 232 alternative splicing events of 18 genes related to polyphenol synthesis…
Ginkgo biloba, which contains flavonoids as bioactive components, is widely used in traditional Chinese medicine. Increasing the flavonoid production of medicinal plants through genetic engineering generally focuses on the key genes involved in flavonoid biosynthesis. However, the molecular mechanisms underlying such biosynthesis are not yet well understood. To understand these mechanisms, a combination of second-generation sequencing (SGS) and single-molecule real-time (SMRT) sequencing was applied to G. biloba. Eight tissues were sampled for SMRT sequencing to generate a high-quality, full-length transcriptome database. From 23.36 Gb clean reads, 12,954 alternative polyadenylation events, 12,290 alternative splicing events, 929 fusion transcripts, 2,286 novel transcripts,…
We present a high-quality de novo genome assembly (rheMacS) of the Chinese rhesus macaque (Macaca mulatta) using long-read sequencing and multiplatform scaffolding approaches. Compared to the current Indian rhesus macaque reference genome (rheMac8), rheMacS increases sequence contiguity 75-fold, closing 21,940 of the remaining assembly gaps (60.8 Mbp). We improve gene annotation by generating more than two million full-length transcripts from ten different tissues by long-read RNA sequencing. We sequence resolve 53,916 structural variants (96% novel) and identify 17,000 ape-specific structural variants (ASSVs) based on comparison to ape genomes. Many ASSVs map within ChIP-seq predicted enhancer regions where apes and macaque…
Flavonoids, theanine and caffeine are the main secondary metabolites of the tea plant (Camellia sinensis), which account for the tea’s unique flavor quality and health benefits. The biosynthesis pathways of these metabolites have been extensively studied at the transcriptional level, but the regulatory mechanisms are still unclear. In this study, to explore the transcriptome diversity and complexity of tea plant, PacBio Iso-Seq and RNA-seq analysis were combined to obtain full-length transcripts and to profile the changes in gene expression during the leaf development. A total of 1,388,066 reads of insert (ROI) were generated with an average length of 1,762?bp, and…
Sulforaphane is a natural isothiocyanate available from cruciferous vegetables with multiple characteristics including antioxidant, antitumor and anti-inflammatory effect. Single-molecule real-time (SMRT) sequencing has been used for long-read de novo assembly of plant genome. Here, we investigated the molecular mechanism related to glucosinolates biosynthesis in Chinese kale using combined NGS and SMRT sequencing.SMRT sequencing produced 185,134 unigenes, higher than 129,325 in next-generation sequencing (NGS). NaCl (75?mM), methyl jasmonate (MeJA, 40?µM), selenate (Se, sodium selenite 100?µM), and brassinolide (BR, 1.5?µM) treatment induced 6893, 13,287, 13,659 and 11,041 differentially expressed genes (DEGs) in Chinese kale seedlings comparing with control. These genes were associated…
Pogostemon cablin (Blanco) Benth. (Patchouli) is an important aromatic and medicinal plant and widely used in traditional Chinese medicine as well as in the perfume industry. Patchoulol is the primary bioactive component in P. cablin, its biosynthesis has attracted widespread interests. Previous studies have surveyed the putative genes involved in patchoulol biosynthesis using next-generation sequencing method; however, technical limitations generated by short-read sequencing restrict the yield of full-length genes. Additionally, little is known about the expression pattern of genes especially patchoulol biosynthesis related genes in response to methyl jasmonate (MeJA). Our understanding of patchoulol biosynthetic pathway still remained largely incomplete…