April 21, 2020  |  

Hybrid Sequencing of Full-Length cDNA Transcripts of the Medicinal Plant Scutellaria baicalensis.

Scutellaria baicalensis is a well-known medicinal plant that produces biologically active flavonoids, such as baicalin, baicalein, and wogonin. Pharmacological studies have shown that these compounds have anti-inflammatory, anti-bacterial, and anti-cancer activities. Therefore, it is of great significance to investigate the genetic information of S. baicalensis, particularly the genes related to the biosynthetic pathways of these compounds. Here, we constructed the full-length transcriptome of S. baicalensis using a hybrid sequencing strategy and acquired 338,136 full-length sequences, accounting for 93.3% of the total reads. After the removal of redundancy and correction with Illumina short reads, 75,785 nonredundant transcripts were generated, among which approximately 98% were annotated with significant hits in the protein databases, and 11,135 sequences were classified as lncRNAs. Differentially expressed gene (DEG) analysis showed that most of the genes related to flavonoid biosynthesis were highly expressed in the roots, consistent with previous reports that the flavonoids were mainly synthesized and accumulated in the roots of S. baicalensis. By constructing unique transcription models, a total of 44,071 alternative splicing (AS) events were identified, with intron retention (IR) accounting for the highest proportion (44.5%). A total of 94 AS events were present in five key genes related to flavonoid biosynthesis, suggesting that AS may play important roles in the regulation of flavonoid biosynthesis in S. baicalensis. This study provided a large number of highly accurate full-length transcripts, which represents a valuable genetic resource for further research of the molecular biology of S. baicalensis, such as the development, breeding, and biosynthesis of active ingredients.

April 21, 2020  |  

Comprehensive transcriptome analysis reveals genes potentially involved in isoflavone biosynthesis in Pueraria thomsonii Benth.

Pueraria thomsonii Benth is an important medicinal plant. Transcriptome sequencing, unigene assembly, the annotation of transcripts and the study of gene expression profiles play vital roles in gene function research. However, the full-length transcriptome of P. thomsonii remains unknown. Here, we obtained 44,339 nonredundant transcripts of P. thomsonii by using the PacBio RS II Isoform and Illumina sequencing platforms, of which 43,195 were annotated genes. Compared with the expression levels in the plant roots, those of transcripts with a |fold change| = 4 and FDR < 0.01 in the leaves or stems were assigned as differentially expressed transcripts (DETs). In total, we found 9,225 DETs, 32 of which came from structural genes that were potentially involved in isoflavone biosynthesis. The expression profiles of 8 structural genes from the RNA-Seq data were validated by qRT-PCR. We identified 437 transcription factors (TFs) that were positively or negatively correlated with at least 1 of the structural genes involved in isoflavone biosynthesis using Pearson correlation coefficients (r) (r > 0.8 or r < -0.8). We also identified a total of 32 microRNAs (miRNAs), which targeted 805 transcripts. These miRNAs caused enriched function in 'ATP binding', 'defense response', 'ADP binding', and 'signal transduction'. Interestingly, MIR156a potentially promoted isoflavone biosynthesis by repressing SBP, and MIR319 promoted isoflavone biosynthesis by repressing TCP and HB-HD-ZIP. Finally, we identified 2,690 alternative splicing events, including that of the structural genes of trans-cinnamate 4-monooxygenase and pullulanase, which are potentially involved in the biosynthesis of isoflavone and starch, respectively, and of three TFs potentially involved in isoflavone biosynthesis. Together, these results provide us with comprehensive insight into the gene expression and regulation of P. thomsonii.

Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.