X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Sunday, September 22, 2019

Bacterial microbiota of Kazakhstan cheese revealed by single molecule real time (SMRT) sequencing and its comparison with Belgian, Kalmykian and Italian artisanal cheeses

In Kazakhstan, traditional artisanal cheeses have a long history and are widely consumed. The unique characteristics of local artisanal cheeses are almost completely preserved. However, their microbial communities have rarely been reported. The current study firstly generated the Single Molecule, Real-Time (SMRT) sequencing bacterial diversity profiles of 6 traditional artisanal cheese samples of Kazakhstan origin, followed by comparatively analyzed the microbiota composition between the current dataset and those from cheeses originated from Belgium, Russian Republic of Kalmykia (Kalmykia) and Italy.

Read More »

Sunday, September 22, 2019

Cultivation-independent and cultivation-dependent analysis of microbes in the shallow-sea hydrothermal system off Kueishantao island, Taiwan: Unmasking heterotrophic bacterial diversity and functional capacity.

Shallow-sea hydrothermal systems experience continuous fluctuations of physicochemical conditions due to seawater influx which generates variable habitats, affecting the phylogenetic composition and metabolic potential of microbial communities. Until recently, studies of submarine hydrothermal communities have focused primarily on chemolithoautotrophic organisms, however, there have been limited studies on heterotrophic bacteria. Here, fluorescence in situ hybridization, high throughput 16S rRNA gene amplicon sequencing, and functional metagenomes were used to assess microbial communities from the shallow-sea hydrothermal system off Kueishantao Island, Taiwan. The results showed that the shallow-sea hydrothermal system harbored not only autotrophic bacteria but abundant heterotrophic bacteria. The potential for marker…

Read More »

Sunday, September 22, 2019

NPBSS: a new PacBio sequencing simulator for generating the continuous long reads with an empirical model.

PacBio sequencing platform offers longer read lengths than the second-generation sequencing technologies. It has revolutionized de novo genome assembly and enabled the automated reconstruction of reference-quality genomes. Due to its extremely wide range of application areas, fast sequencing simulation systems with high fidelity are in great demand to facilitate the development and comparison of subsequent analysis tools. Although there are several available simulators (e.g., PBSIM, SimLoRD and FASTQSim) that target the specific generation of PacBio libraries, the error rate of simulated sequences is not well matched to the quality value of raw PacBio datasets, especially for PacBio’s continuous long reads…

Read More »

Sunday, September 22, 2019

Thermosipho spp. immune system differences affect variation in genome size and geographical distributions.

Thermosipho species inhabit thermal environments such as marine hydrothermal vents, petroleum reservoirs, and terrestrial hot springs. A 16S rRNA phylogeny of available Thermosipho spp. sequences suggested habitat specialists adapted to living in hydrothermal vents only, and habitat generalists inhabiting oil reservoirs, hydrothermal vents, and hotsprings. Comparative genomics of 15 Thermosipho genomes separated them into three distinct species with different habitat distributions: The widely distributed T. africanus and the more specialized, T. melanesiensis and T. affectus. Moreover, the species can be differentiated on the basis of genome size (GS), genome content, and immune system composition. For instance, the T. africanus genomes…

Read More »

Sunday, September 22, 2019

Evaluation of bacterial contamination in goat milk powder using PacBio Single Molecule Real-Time Sequencing and Droplet Digital PCR.

Goat milk powder is a nutritious and easy-to-store product that is highly favored by consumers. However, the presence of contaminating bacteria and their metabolites may significantly affect the flavor, solubility, shelf life, and safety of the product. To comprehensively and accurately understand the sanitary conditions in the goat milk powder production process and potential threats from bacterial contamination, a combination of Pacific Biosciences single molecule real-time sequencing and droplet digital PCR was used to evaluate bacterial contamination in seven goat milk powder samples from three dairies. Ten phyla, 119 genera, and 249 bacterial species were identified. Bacillus, Paenibacillus, Lactococcus, and…

Read More »

Sunday, September 22, 2019

Comparative analysis of Faecalibacterium prausnitzii genomes shows a high level of genome plasticity and warrants separation into new species-level taxa.

Faecalibacterium prausnitzii is a ubiquitous member of the human gut microbiome, constituting up to 15% of the total bacteria in the human gut. Substantial evidence connects decreased levels of F. prausnitzii with the onset and progression of certain forms of inflammatory bowel disease, which has been attributed to its anti-inflammatory potential. Two phylogroups of F. prausnitzii have been identified, with a decrease in phylogroup I being a more sensitive marker of intestinal inflammation. Much of the genomic and physiological data available to date was collected using phylogroup II strains. Little analysis of F. prausnitzii genomes has been performed so far…

Read More »

Sunday, September 22, 2019

The phylogenomic diversity of herbivore- associated Fibrobacter spp. is correlated to lignocellulose-degrading potential.

Members of the genus Fibrobacter are cellulose-degrading bacteria and common constituents of the gastrointestinal microbiota of herbivores. Although considerable phylogenetic diversity is observed among members of this group, few functional differences explaining the distinct ecological distributions of specific phylotypes have been described. In this study, we sequenced and performed a comparative analysis of whole genomes from 38 novel Fibrobacter strains against the type strains for the two formally described Fibrobacter species F. succinogenes strain S85 and F. intestinalis strain NR9. Significant differences in the number of genes encoding carbohydrate-active enzyme families involved in plant cell wall polysaccharide degradation were observed…

Read More »

Saturday, September 21, 2019

Chromulinavorax destructans, a pathogenic TM6 bacterium with an unusual replication strategy targeting protist mitochondrion

Most of the diversity of microbial life is not available in culture, and as such we lack even a fundamental understanding of the biological diversity of several branches on the tree of life. One branch that is highly underrepresented is the candidate phylum TM6, also known as the Dependentiae. Their biology is known only from reduced genomes recovered from metagenomes around the world and two isolates infecting amoebae, all suggest that they live highly host-associated lifestyles as parasites or symbionts. Chromulinavorax destructans is an isolate from the TM6/Dependentiae that infects and lyses the abundant heterotrophic flagellate, Spumella elongata. Chromulinavorax destructans…

Read More »

Saturday, September 21, 2019

From the inside out: An epibiotic Bdellovibrio predator with an expanded genomic complement

Bdellovibrio and like organisms are abundant environmental predators of prokaryotes that show a diversity of predation strategies, ranging from intra-periplasmic to epibiotic predation. The novel epibiotic predator Bdellovibrio qaytius was isolated from a eutrophic freshwater pond in British Columbia, where it was a continual part of the microbial community. Bdellovibrio qaytius was found to preferentially prey on the beta-proteobacterium Paraburkholderia fungorum. Despite its epibiotic replication strategy, B. qaytius encodes a complex genomic complement more similar to periplasmic predators as well as several biosynthesis pathways not previously found in epibiotic predators. Bdellovibrio qaytius is representative of a widely distributed basal cluster…

Read More »

1 7 8 9

Subscribe for blog updates:

Archives