Structural variation accounts for much of the variation among human genomes. Structural variants of all types are known to cause Mendelian disease and contribute to complex disease. Learn how long-read sequencing is enabling detection of the full spectrum of structural variants to advance the study of human disease, evolution and genetic diversity.
With the PacBio no-amplification (No-Amp) targeted sequencing method, you can now sequence through previously inaccessible regions of the genome to provide base-level resolution of disease-causing repeat expansions. By combining the CRISPR-Cas9 enrichment method with Single Molecule, Real-Time (SMRT) Sequencing on the Sequel Systems you are no longer limited by hard-to-amplify targets.
In this ASHG 2016 virtual poster, Flora Tassone from UC Davis describes her study of the molecular mechanisms linked to fragile X syndrome and associated disorders, such as FXTAS. She is using SMRT Sequencing to resolve the FMR1 gene in premutation carriers because it’s the only technology that can generate full-length transcripts with the causative CGG repeat expansion. Plus: direct confirmation of predicted isoform configurations.
PacBio’s Jenny Ekholm presents this ASHG 2016 poster on a new method being developed that enriches for unamplified DNA and uses SMRT Sequencing to characterize repeat expansion disorders. Incorporating the CRISPR/Cas9 system to target specific genes allows for amplification-free enrichment to preserve epigenetic information and avoid PCR bias. Internal studies have shown that the approach can successfully be used to target and sequence the CAG repeat responsible for Huntington’s disease, the repeat associated with ALS, and more. The approach allows for pooling many samples and sequencing with a single SMRT Cell.
In this AGBT 2017 talk, PacBio CSO Jonas Korlach provided a technology roadmap for the Sequel System, including plans the continue performance and throughput increases through early 2019. Per SMRT Cell throughput of the Sequel System is expected to double this year and again next year. Together with a new higher-capacity SMRT Cell expected to be released by the end of 2018, these improvements result in a ~30-fold increase or ~150 Gb / SMRT Cell allowing a real $1000 real de novo human genome assembly. Also discussed: Additional application protocol improvements, new chemistry and software updates, and a look at…
Targeted sequencing has proven to be an economical means of obtaining sequence information for one or more defined regions of a larger genome. However, most target enrichment methods are reliant upon some form of amplification. Amplification removes the epigenetic marks present in native DNA, and some genomic regions, such as those with extreme GC content and repetitive sequences, are recalcitrant to faithful amplification. Yet, a large number of genetic disorders are caused by expansions of repeat sequences. Furthermore, for some disorders, methylation status has been shown to be a key factor in the mechanism of disease. We have developed a…
SMRT Sequencing is a DNA sequencing technology characterized by long read lengths and high consensus accuracy, regardless of the sequence complexity or GC content of the DNA sample. These characteristics can be harnessed to address medically relevant genes, mRNA transcripts, and other genomic features that are otherwise difficult or impossible to resolve. I will describe examples for such new clinical research in diverse areas, including full-length gene sequencing with allelic haplotype phasing, gene/pseudogene discrimination, sequencing extreme DNA contexts, high-resolution pharmacogenomics, biomarker discovery, structural variant resolution, full-length mRNA isoform cataloging, and direct methylation detection.
Genomic regions with extreme base composition bias and repetitive sequences have long proven challenging for targeted enrichment methods, as they rely upon some form of amplification. Similarly, most DNA sequencing technologies struggle to faithfully sequence regions of low complexity. This has especially been true for repeat expansion disorders such as Fragile X syndrome, Huntington’s disease and various Ataxias, where the repetitive elements range from several hundreds of bases to tens of kilobases. We have developed a robust, amplification-free targeted enrichment technique, called No-Amp Targeted Sequencing, that employs the CRISPR/Cas9 system. In conjunction with Single Molecule, Real-Time (SMRT) Sequencing, which delivers…
Many genetic disorders are associated with repeat sequence expansions. Obtaining accurate DNA sequence information from these regions will facilitate researchers to further establish the relationship between these genetic disorders and underlying disease mechanisms. Moreover, repeat interruptions have also been shown to act as phenotypic modifiers in some disorders. Targeted sequencing is an economical way to obtain sequence information from one or more defined regions in a genome. However, most targeted enrichment and sequencing methods require some form of DNA amplification. Amplifying large regions with extreme GC content as seen in repeat expansion disorders is challenging and prone to introducing sequence…
Genomic regions with extreme base composition bias and repetitive sequences have long proven challenging for targeted enrichment methods, as they rely upon some form of amplification. Similarly, most DNA sequencing technologies struggle to faithfully sequence regions of low complexity. This has been especially trying for repeat expansion disorders such as Fragile-X disease, Huntington disease and various Ataxias, where the repetitive elements range from several hundreds of bases to tens of kilobases. We have developed a robust, amplification-free targeted enrichment technique, called No-Amp Targeted Sequencing, that employs the CRISPR-Cas9 system. In conjunction with SMRT Sequencing, which delivers long reads spanning the…
Alleles of the FMR1 gene with more than 200 CGG repeats generally undergo methylation-coupled gene silencing, resulting in fragile X syndrome, the leading heritable form of cognitive impairment. Smaller expansions (55-200 CGG repeats) result in elevated levels of FMR1 mRNA, which is directly responsible for the late-onset neurodegenerative disorder, fragile X-associated tremor/ataxia syndrome (FXTAS). For mechanistic studies and genetic counseling, it is important to know with precision the number of CGG repeats; however, no existing DNA sequencing method is capable of sequencing through more than ~100 CGG repeats, thus limiting the ability to precisely characterize the disease-causing alleles. The recent…
Second-generation sequencing has brought about tremendous insights into the genetic underpinnings of biology. However, there are many functionally important and medically relevant regions of genomes that are currently difficult or impossible to sequence, resulting in incomplete and fragmented views of genomes. Two main causes are (i) limitations to read DNA of extreme sequence content (GC-rich or AT-rich regions, low complexity sequence contexts) and (ii) insufficient read lengths which leave various forms of structural variation unresolved and result in mapping ambiguities.
For many of the repeat expansion disorders, the disease gene has been discovered, however the underlying biological mechanisms have not yet been fully understood. This is mainly due to technological limitations that do not allow for the needed base-pair resolution of the long, repetitive genomic regions. We have developed a novel, amplification-free enrichment technique that uses the CRISPR/Cas9 system to target large repeat expansions. This method, in conjunction with PacBio’s long reads and uniform coverage, enables sequencing of these complex genomic regions. By using a PCR-free amplification method, we are able to access not only the repetitive elements and interruption…
We have developed several candidate gene screening applications for both Neuromuscular and Neurological disorders. The power behind these applications comes from the use of long-read sequencing. It allows us to access previously unresolvable and even unsequencable genomic regions. SMRT Sequencing offers uniform coverage, a lack of sequence context bias, and very high accuracy. In addition, it is also possible to directly detect epigenetic signatures and characterize full-length gene transcripts through assembly-free isoform sequencing. In addition to calling the bases, SMRT Sequencing uses the kinetic information from each nucleotide to distinguish between modified and native bases.
Nucleotide repeat expansions are a major cause of neurological and neuromuscular disease in humans, however, the nature of these genomic regions makes characterizing them extremely challenging. Accurate DNA sequencing of repeat expansions using short-read sequencing technologies is difficult, as short-read technologies often cannot read through regions of low sequence complexity. Additionally, these short reads do not span the entire region of interest and therefore sequence assembly is required. Lastly, most target enrichment methods are reliant upon amplification which adds the additional caveat of PCR bias. We have developed a novel, amplification-free enrichment technique that employs the CRISPR/Cas9 system for specific…