June 1, 2021  |  

Unique haplotype structure determination in human genome using Single Molecule, Real-Time (SMRT) Sequencing of targeted full-length fosmids.

Determination of unique individual haplotypes is an essential first step toward understanding how identical genotypes having different phases lead to different biological interpretations of function, phenotype, and disease. Genome-wide methods for identifying individual genetic variation have been limited in their ability to acquire phased, extended, and complete genomic sequences that are long enough to assemble haplotypes with high confidence. We explore a recombineering approach for isolation and sequencing of a tiling of targeted fosmids to capture interesting regions from human genome. Each individual fosmid contains large genomic fragments (~35?kb) that are sequenced with long-read SMRT technology to generate contiguous long reads. These long reads can be easily de novo assembled for targeted haplotype resolution within an individual’s genomes. The P5-C3 chemistry for SMRT Sequencing generated contiguous, full-length fosmid sequences of 30 to 40 kb in a single read, allowing assembly of resolved haplotypes with minimal data processing. The phase preserved in fosmid clones spanned at least two heterozygous variant loci, providing the essential detail of precise haplotype structures. We show complete assembly of haplotypes for various targeted loci, including the complex haplotypes of the KIR locus (~150 to 200 kb) and conserved extended haplotypes (CEHs) of the MHC region. This method is easily applicable to other regions of the human genome, as well as other genomes.


June 1, 2021  |  

Resolving KIR genotypes and haplotypes simultaneously using Single Molecule, Real-Time Sequencing

The killer immunoglobulin-like receptors (KIR) genes belong to the immunoglobulin superfamily and are widely studied due to the critical role they play in coordinating the innate immune response to infection and disease. Highly accurate, contiguous, long reads, like those generated by SMRT Sequencing, when combined with target-enrichment protocols, provide a straightforward strategy for generating complete de novo assembled KIR haplotypes. We have explored two different methods to capture the KIR region; one applying the use of fosmid clones and one using Nimblegen capture.


April 21, 2020  |  

Insect genomes: progress and challenges.

In the wake of constant improvements in sequencing technologies, numerous insect genomes have been sequenced. Currently, 1219 insect genome-sequencing projects have been registered with the National Center for Biotechnology Information, including 401 that have genome assemblies and 155 with an official gene set of annotated protein-coding genes. Comparative genomics analysis showed that the expansion or contraction of gene families was associated with well-studied physiological traits such as immune system, metabolic detoxification, parasitism and polyphagy in insects. Here, we summarize the progress of insect genome sequencing, with an emphasis on how this impacts research on pest control. We begin with a brief introduction to the basic concepts of genome assembly, annotation and metrics for evaluating the quality of draft assemblies. We then provide an overview of genome information for numerous insect species, highlighting examples from prominent model organisms, agricultural pests and disease vectors. We also introduce the major insect genome databases. The increasing availability of insect genomic resources is beneficial for developing alternative pest control methods. However, many opportunities remain for developing data-mining tools that make maximal use of the available insect genome resources. Although rapid progress has been achieved, many challenges remain in the field of insect genomics. © 2019 The Royal Entomological Society.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.