X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Sunday, September 22, 2019

Transcriptome profiling using single-molecule direct RNA sequencing approach for in-depth understanding of genes in secondary metabolism pathways of Camellia sinensis.

Characteristic secondary metabolites, including flavonoids, theanine and caffeine, are important components of Camellia sinensis, and their biosynthesis has attracted widespread interest. Previous studies on the biosynthesis of these major secondary metabolites using next-generation sequencing technologies limited the accurately prediction of full-length (FL) splice isoforms. Herein, we applied single-molecule sequencing to pooled tea plant tissues, to provide a more complete transcriptome of C. sinensis. Moreover, we identified 94 FL transcripts and four alternative splicing events for enzyme-coding genes involved in the biosynthesis of flavonoids, theanine and caffeine. According to the comparison between long-read isoforms and assemble transcripts, we improved the quality…

Read More »

Sunday, September 22, 2019

Using PacBio long-read high-throughput microbial gene amplicon sequencing to evaluate infant formula safety.

Infant formula (IF) requires a strict microbiological standard because of the high vulnerability of infants to foodborne diseases. The current study used the PacBio single molecule real-time (SMRT) sequencing platform to generate full-length 16S rRNA-based bacterial microbiota profiles of thirty Chinese domestic and imported IF samples. A total of 600 species were identified, dominated by Streptococcus thermophilus, Lactococcus lactis and Lactococcus piscium. Distinctive bacterial profiles were observed between the two sample groups, as confirmed with both principal coordinate analysis and multivariate analysis of variance. Moreover, the product whey protein nitrogen index (WPNI), representing the degree of preheating, negatively correlated with…

Read More »

Sunday, September 22, 2019

Identification of microbial profile of Koji using Single Molecule, Real-Time Sequencing technology.

Koji is a kind of Japanese traditional fermented starter that has been used for centuries. Many fermented foods are made from koji, such as sake, miso, and soy sauce. This study used the single molecule real-time sequencing technology (SMRT) to investigate the bacterial and fungal microbiota of 3 Japanese koji samples. After SMRT analysis, a total of 39121 high-quality sequences were generated, including 14354 bacterial and 24767 fungal sequence reads. The high-quality gene sequences were assigned to 5 bacterial and 2 fungal plyla, dominated by Proteobacteria and Ascomycota, respectively. At the genus level, Ochrobactrum and Wickerhamomyces were the most abundant…

Read More »

Sunday, September 22, 2019

Effect of Chinese rice wine sludge on the production of Chinese steamed buns

Chinese rice wine sludge (CRWS), analogous to beer yeast sludge, is the filter cake remaining after squeezing the fermentation mash of Chinese rice wine. CRWS contains high levels of protein (44.74%), nonstructural carbohydrates (37.33%), crude fiber (13.5%), and essential amino acids, which could enhance the trophic value of Chinese steamed buns. In our research, the microbiota of CRWS (mainly Saccharomyces cerevisiae and Lactobacillus sp.) was analyzed at the species level by single-molecule real-time DNA sequencing technology. Interestingly, the microbiota of CRWS was similar to that of the starter dough typically used to prepare Chinese steamed buns. Incorporation of CRWS significantly…

Read More »

Sunday, September 22, 2019

Cultivation and sequencing of rumen microbiome members from the Hungate1000 Collection.

Productivity of ruminant livestock depends on the rumen microbiota, which ferment indigestible plant polysaccharides into nutrients used for growth. Understanding the functions carried out by the rumen microbiota is important for reducing greenhouse gas production by ruminants and for developing biofuels from lignocellulose. We present 410 cultured bacteria and archaea, together with their reference genomes, representing every cultivated rumen-associated archaeal and bacterial family. We evaluate polysaccharide degradation, short-chain fatty acid production and methanogenesis pathways, and assign specific taxa to functions. A total of 336 organisms were present in available rumen metagenomic data sets, and 134 were present in human gut…

Read More »

Sunday, September 22, 2019

Comparative transcriptome analysis of genes involved in Na+ transport in the leaves of halophyte Halogeton glomeratus.

Compartmentalization of Na+ into vacuoles is considered to be the most critical aspect of salt tolerance in H. glomeratus, an annual, succulent halophyte. Previous analysis of transcriptome involved in the H. glomeratus salt stress response relied on next-generation sequencing technologies that limit the capture of accurately spliced, full-length isoforms. To gain deeper insights into its salt stress response, we used the H. glomeratus Iso-Seq transcriptome database as a reference, and subsequent next-generation sequencing was subjected to various NaCl concentrations of leaves from plants revealed 115 upregulated and 87 downregulated differentially expressed isoforms (core DEIs). The majority of the core DEIs…

Read More »

Sunday, September 22, 2019

Investigating bacterial population structure and dynamics in traditional koumiss from Inner Mongolia using single molecule real-time sequencing.

Koumiss is considered as a complete dairy product high in nutrients and with medicinal properties. The bacterial communities involved in production of koumiss play a crucial role in the fermentation cycle. To reveal bacterial biodiversity in koumiss and the dynamics of succession in bacterial populations during fermentation, 22 samples were collected from 5 sampling sites and the full length of the 16S ribosomal RNA genes sequenced using single molecule real-time sequencing technology. One hundred forty-eight species were identified from 82 bacterial genera and 8 phyla. These results suggested that the structural difference in the bacterial community could be attributed to…

Read More »

Sunday, September 22, 2019

The discovered chimeric protein plays the cohesive role to maintain scallop byssal root structural integrity.

Adhesion is essential for many marine sessile organisms. Unraveling the compositions and assembly of marine bioadheisves is the fundamental to understand their physiological roles. Despite the remarkable diversity of animal bioadhesion, our understanding of this biological process remains limited to only a few animal lineages, leaving the majority of lineages remain enigmatic. Our previous study demonstrated that scallop byssus had distinct protein composition and unusual assembly mechanism apart from mussels. Here a novel protein (Sbp9) was discovered from the key part of the byssus (byssal root), which contains two Calcium Binding Domain (CBD) and 49 tandem Epidermal Growth Factor-Like (EGFL)…

Read More »

Sunday, September 22, 2019

Transcriptome sequencing and comparative analysis of differentially-expressed isoforms in the roots of Halogeton glomeratus under salt stress.

Although Halogeton glomeratus (H. glomeratus) has been confirmed to have a unique mechanism to regulate Na+efflux from the cytoplasm and compartmentalize Na+into leaf vacuoles, little is known about the salt tolerance mechanisms of roots under salinity stress. In the present study, transcripts were sequenced using the BGISEQ-500 sequencing platform (BGI, Wuhan, China). After quality control, approximately 24.08 million clean reads were obtained and the average mapping ratio to the reference gene was 70.00%. When comparing salt-treated samples with the control, a total of 550, 590, 1411 and 2063 DEIs were identified at 2, 6, 24 and 72h, respectively. Numerous differentially-expressed…

Read More »

Sunday, September 22, 2019

Bacterial microbiota of Kazakhstan cheese revealed by single molecule real time (SMRT) sequencing and its comparison with Belgian, Kalmykian and Italian artisanal cheeses

In Kazakhstan, traditional artisanal cheeses have a long history and are widely consumed. The unique characteristics of local artisanal cheeses are almost completely preserved. However, their microbial communities have rarely been reported. The current study firstly generated the Single Molecule, Real-Time (SMRT) sequencing bacterial diversity profiles of 6 traditional artisanal cheese samples of Kazakhstan origin, followed by comparatively analyzed the microbiota composition between the current dataset and those from cheeses originated from Belgium, Russian Republic of Kalmykia (Kalmykia) and Italy.

Read More »

Sunday, September 22, 2019

The genome sequence of the commercially cultivated mushroom Agrocybe aegerita reveals a conserved repertoire of fruiting-related genes and a versatile suite of biopolymer-degrading enzymes.

Agrocybe aegerita is an agaricomycete fungus with typical mushroom features, which is commercially cultivated for its culinary use. In nature, it is a saprotrophic or facultative pathogenic fungus causing a white-rot of hardwood in forests of warm and mild climate. The ease of cultivation and fructification on solidified media as well as its archetypal mushroom fruit body morphology render A. aegerita a well-suited model for investigating mushroom developmental biology.Here, the genome of the species is reported and analysed with respect to carbohydrate active genes and genes known to play a role during fruit body formation. In terms of fruit body…

Read More »

Sunday, September 22, 2019

Comparative genomics of completely sequenced Lactobacillus helveticus genomes provides insights into strain-specific genes and resolves metagenomics data down to the strain level.

Although complete genome sequences hold particular value for an accurate description of core genomes, the identification of strain-specific genes, and as the optimal basis for functional genomics studies, they are still largely underrepresented in public repositories. Based on an assessment of the genome assembly complexity for all lactobacilli, we used Pacific Biosciences’ long read technology to sequence and de novo assemble the genomes of three Lactobacillus helveticus starter strains, raising the number of completely sequenced strains to 12. The first comparative genomics study for L. helveticus-to our knowledge-identified a core genome of 988 genes and sets of unique, strain-specific genes…

Read More »

Sunday, September 22, 2019

Characterization of ß-glucan formation by Lactobacillus brevis TMW 1.2112 isolated from slimy spoiled beer.

Despite several hurdles, which hinder bacterial growth in beer, certain bacteria are still able to spoil beer. One type of spoilage is characterized by an increased viscosity and slimy texture caused by exopolysaccharide (EPS) formation of lactic acid bacteria (LAB). In this study, we characterize for the first time EPS production in a beer-spoiling strain (TMW 1.2112) of Lactobacillus brevis, a species commonly involved in beer spoilage. The strain’s growth dynamics were assessed and we found an increased viscosity or ropiness in liquid or on solid media, respectively. Capsular polysaccharides (CPS) and released EPS from the cells or supernatant, respectively,…

Read More »

1 2 3 4 10

Subscribe for blog updates:

Archives