Goat is an important source of milk, meat, and fiber, especially in developing countries. An advantage of goats as livestock is the low maintenance requirements and high adaptability compared to other milk producers. The global population of domestic goats exceeds 800 million. In Africa, goat production is characterized by low productivity levels, and attempts to introduce more productive breeds have met with poor success due in part to nutritional constraints. It has been suggested that incorporation of selective breeding within the herds adapted for survival could represent one approach to improving food security across Africa. A recently produced genome assembly…
Single Molecule, Real-Time (SMRT) Sequencing holds promise for addressing new frontiers in large genome complexities, such as long, highly repetitive, low-complexity regions and duplication events, and differentiating between transcript isoforms that are difficult to resolve with short-read technologies. We present solutions available for both reference genome improvement (>100 MB) and transcriptome research to best leverage long reads that have exceeded 20 Kb in length. Benefits for these applications are further realized with consistent use of size-selection of input sample using the BluePippin™ device from Sage Science. Highlights from our genome assembly projects using the latest P5-C3 chemistry on model organisms…
While the utility of Single Molecule, Real-Time (SMRT) Sequencing for de novo assembly and finishing of bacterial isolates is well established, this technology has not yet been widely applied to shotgun sequencing of microbial communities. In order to demonstrate the feasibility of this approach, we sequenced genomic DNA from the Microbial Mock Community B of the Human Microbiome Project
The data throughput of next-generation sequencing allows whole microbial communities to be analyzed using a shotgun sequencing approach. Because a key task in taking advantage of these data is the ability to cluster reads that belong to the same member in a community, single-molecule long reads of up to 30 kb from SMRT Sequencing provide a unique capability in identifying those relationships and pave the way towards finished assemblies of community members. Long reads become even more valuable as samples get more complex with lower intra-species variation, a larger number of closely related species, or high intra-species variation. Here we…
The throughput of SMRT Sequencing and long reads allows microbial communities to be analyzed using a shotgun sequencing approach. Key to leveraging this data is the ability to cluster sequences belonging to the same member of a community. Long reads of up to 40 kb provide a unique capability in identifying those relationships, and pave the way towards finished assemblies of community members. Long reads are highly valuable when samples are more complex and containing lower intra-species variation, such as a larger number of closely related species, or high intra-species variation. Here, we present a collection of tools tailored for…
Significant advances in bioinformatics tool development have been made to more efficiently leverage and deliver high-quality genome assemblies with PacBio long-read data. Current data throughput of SMRT Sequencing delivers average read lengths ranging from 10-15 kb with the longest reads exceeding 40 kb. This has resulted in consistent demonstration of a minimum 10-fold improvement in genome assemblies with contig N50 in the megabase range compared to assemblies generated using only short- read technologies. This poster highlights recent advances and resources available for advanced bioinformaticians and developers interested in the current state-of-the-art large genome solutions available as open-source code from PacBio…
Heterozygous and highly polymorphic diploid (2n) and higher polyploidy (n > 2) genomes have proven to be very difficult to assemble. One key to the successful assembly and phasing of polymorphic genomics is the very long read length (9-40 kb) provided by the PacBio RS II system. We recently released software and methods that facilitate the assembly and phasing of genomes with ploidy levels equal to or greater than 2n. In an effort to collaborate and spur on algorithm development for assembly and phasing of heterozygous polymorphic genomes, we have recently released sequencing datasets that can be used to test…
Second-generation sequencing has brought about tremendous insights into the genetic underpinnings of biology. However, there are many functionally important and medically relevant regions of genomes that are currently difficult or impossible to sequence, resulting in incomplete and fragmented views of genomes. Two main causes are (i) limitations to read DNA of extreme sequence content (GC-rich or AT-rich regions, low complexity sequence contexts) and (ii) insufficient read lengths which leave various forms of structural variation unresolved and result in mapping ambiguities.
2015 SMRT Informatics Developers Conference Presentation Slides: Jason Chin of PacBio highlighted some of the challenges for shotgun assembly while suggesting some potential solutions to obtain diploid assemblies, including the FALCON method.
2015 SMRT Informatics Developers Conference Presentation Slides: Gene Myers, Ph.D., Founding Director, Systems Biology Center, Max Planck Institute delivered the keynote presentation. He talked about building efficient assemblers, the importance of random error distribution in sequencing data, and resolving tricky repeats with very long reads. He also encouraged developers to release assembly modules openly, and noted that data should be straightforward to parse since sharing data interfaces is easier than sharing software interfaces.
2015 SMRT Informatics Developers Conference Presentation Slides: Shinichi Morishita of the University of Tokyo presented on how his team has been using SMRT Sequencing to better understand methylomes, metagenomes and structural variation of various eukaryotic genomes.
Purpose: Clinical laboratories, research laboratories and technology developers all need DNA samples with reliably known genotypes in order to help validate and improve their methods. The Genome in a Bottle Consortium (genomeinabottle.org) has been developing Reference Materials with high-accuracy whole genome sequences to support these efforts.Methodology: Our pilot reference material is based on Coriell sample NA12878 and was released in May 2015 as NIST RM 8398 (tinyurl.com/giabpilot). To minimize bias and improve accuracy, 11 whole-genome and 3 exome data sets produced using 5 different technologies were integrated using a systematic arbitration method [1]. The Genome in a Bottle Analysis Group…
The Genome in a Bottle Consortium is developing the reference materials, reference methods , and reference data n
The human reference sequence has provided a foundation for studies of genome structure, human variation, evolutionary biology, and disease. At the time the reference was originally completed there were some loci recalcitrant to closure; however, the degree to which structural variation and diversity affected our ability to produce a representative genome sequence at these loci was still unknown. Many of these regions in the genome are associated with large, repetitive sequences and exhibit complex allelic diversity such producing a single, haploid representation is not possible. To overcome this challenge, we have sequenced DNA from two hydatidiform moles (CHM1 and CHM13),…