April 21, 2020  |  

Complete Genome Sequence of a Colistin-Resistant Uropathogenic Escherichia coli Sequence Type 131 fimH22 Strain Harboring mcr-1 on an IncHI2 Plasmid, Isolated in Riyadh, Saudi Arabia.

We report the complete genome sequence of a colistin-resistant strain of uropathogenic Escherichia coli, isolated in January 2013 at King Abdulaziz Medical City (KAMC), Riyadh, Saudi Arabia. The isolate (named SA186) was sequence type 131 (ST131) and belonged to serotype O25b-H4 and clade B (fimH22).Copyright © 2019 Alghoribi et al.


April 21, 2020  |  

Increased prevalence of Escherichia coli strains from food carrying blaNDM and mcr-1-bearing plasmids that structurally resemble those of clinical strains, China, 2015 to 2017.

Introduction: Emergence of resistance determinants of blaNDM and mcr-1 has undermined the antimicrobial effectiveness of the last line drugs carbapenems and colistin. Aim: This work aimed to assess the prevalence of blaNDM and mcr-1 in E. coli strains collected from food in Shenzhen, China, during the period 2015 to 2017. Methods: Multidrug-resistant E. coli strains were isolated from food samples. Plasmids encoding mcr-1 or blaNDM genes were characterised and compared with plasmids found in clinical isolates.ResultsAmong 1,166 non-repeated cephalosporin-resistant E. coli strains isolated from 2,147 food samples, 390 and 42, respectively, were resistant to colistin and meropenem, with five strains being resistant to both agents. The rate of resistance to colistin increased significantly (p?


April 21, 2020  |  

Detection of VIM-1-Producing Enterobacter cloacae and Salmonella enterica Serovars Infantis and Goldcoast at a Breeding Pig Farm in Germany in 2017 and Their Molecular Relationship to Former VIM-1-Producing S. Infantis Isolates in German Livestock Production.

In 2011, VIM-1-producing Salmonella enterica serovar Infantis and Escherichia coli were isolated for the first time in four German livestock farms. In 2015/2016, highly related isolates were identified in German pig production. This raised the issue of potential reservoirs for these isolates, the relation of their mobile genetic elements, and potential links between the different affected farms/facilities. In a piglet-producing farm suspicious for being linked to some blaVIM-1 findings in Germany, fecal and environmental samples were examined for the presence of carbapenemase-producing Enterobacteriaceae and Salmonella spp. Newly discovered isolates were subjected to Illumina whole-genome sequencing (WGS) and S1 pulsed-field gel electrophoresis (PFGE) hybridization experiments. WGS data of these isolates were compared with those for the previously isolated VIM-1-producing Salmonella Infantis isolates from pigs and poultry. Among 103 samples, one Salmonella Goldcoast isolate, one Salmonella Infantis isolate, and one Enterobacter cloacae isolate carrying the blaVIM-1 gene were detected. Comparative WGS analysis revealed that the blaVIM-1 gene was part of a particular Tn21-like transposable element in all isolates. It was located on IncHI2 (ST1) plasmids of ~290 to 300?kb with a backbone highly similar (98 to 100%) to that of reference pSE15-SA01028. SNP analysis revealed a close relationship of all VIM-1-positive S Infantis isolates described since 2011. The findings of this study demonstrate that the occurrence of the blaVIM-1 gene in German livestock is restricted neither to a certain bacterial species nor to a certain Salmonella serovar but is linked to a particular Tn21-like transposable element located on transferable pSE15-SA01028-like IncHI2 (ST1) plasmids, being present in all of the investigated isolates from 2011 to 2017.IMPORTANCE Carbapenems are considered one of few remaining treatment options against multidrug-resistant Gram-negative pathogens in human clinical settings. The occurrence of carbapenemase-producing Enterobacteriaceae in livestock and food is a major public health concern. Particularly the occurrence of VIM-1-producing Salmonella Infantis in livestock farms is worrisome, as this zoonotic pathogen is one of the main causes for human salmonellosis in Europe. Investigations on the epidemiology of those carbapenemase-producing isolates and associated mobile genetic elements through an in-depth molecular characterization are indispensable to understand the transmission of carbapenemase-producing Enterobacteriaceae along the food chain and between different populations to develop strategies to prevent their further spread.Copyright © 2019 Roschanski et al.


April 21, 2020  |  

Multidrug resistance and multivirulence plasmids in enterotoxigenic and hybrid Shiga toxin-producing/enterotoxigenic Escherichia coli isolated from diarrheic pigs in Switzerland.

Enterovirulent Escherichia coli infections cause significant losses in the pig industry. However, information about the structures of the virulence and multidrug resistance (MDR) plasmids harboured by these strains is sparse. In this study, we used whole-genome sequencing with PacBio and Illumina platforms to analyse the molecular features of the multidrug-resistant enterotoxigenic E. coli (ETEC) strain 14OD0056 and the multidrug-resistant hybrid Shiga toxin-producing/enterotoxigenic E. coli (STEC/ETEC) strain 15OD0495 isolated from diarrheic pigs in Switzerland. Strain 14OD0056 possessed three virulence plasmids similar to others previously found in ETEC strains, while 15OD0495 harboured a 119-kb multivirulence IncFII/IncX1 hybrid STEC/ETEC plasmid (p15ODTXV) that co-carried virulence genes of both ETEC and STEC pathotypes, confirming the key role of plasmids in the emergence of hybrid pathotypes. All resistance genes of 14OD0056 that conferred resistance to ampicillin (blaTEM-1b), gentamicin (aac(3)-IIa), kanamycin (aph(3′)-Ia), sulfonamide (sul1 and sul2), streptomycin (aph(3?)-Ib, aph(6)-Id), tetracycline (tet(B)) and trimethoprim (dfrA1) were identified on a single 207-kb conjugative MDR plasmid of incompatibility group (Inc) IncHI1/IncFIA (p14ODMR). Strain 15OD0495 carried two antimicrobial resistance plasmids (p15ODAR and p15ODMR). The 99-kb IncI1 plasmid p15ODAR harboured only aminoglycoside resistance genes (aac(3)-IIa, aph(3?)-Ib, aph(6)-Id, aph(4)-Ia), whilst the 49-kb IncN MDR plasmid p15ODMR carried genes conferring resistance to ampicillin (blaTEM-1b), sulfonamide (sul2), streptomycin (aph(6)-Id), tetracycline (tet(A)) and trimethoprim (dfrA14). Filter mating assays showed that p14ODMR, p15ODMR and p15ODAR were conjugative at room temperature and 37°C. The co-localization of multiple resistance genes on MDR conjugative plasmids such as p14ODMR and p15ODMR poses the risk of simultaneous selection of several resistance traits during empirical treatment. Thus, preventive strategies and targeted therapy following antibiotic susceptibility testing should be encouraged to avoid further dissemination of such plasmids. Copyright © 2018 Elsevier Ltd. All rights reserved.


April 21, 2020  |  

Genetic Analysis of p17S-208 Plasmid Encoding the Colistin Resistance mcr-3 Gene in Escherichia coli Isolated from Swine in South Korea.

We screened, for the first time, plasmid-mediated colistin resistance mcr-3 genes among 636 Escherichia coli isolates collected from swine in South Korea. Whole-genome sequencing showed that the E. coli strain harbored the mcr-3 gene in a p17S-208 plasmid with an IncHI2-ST3 plasmid type and a size of 260,399 base pairs. The deduced amino acid sequences revealed that persistent evolution in the bacterial genome has resulted in mcr gene variants. There is a need for extensive surveillance to prevent the dissemination of colistin resistance mcr genes from animal to human.


April 21, 2020  |  

Epidemiologic and genomic insights on mcr-1-harbouring Salmonella from diarrhoeal outpatients in Shanghai, China, 2006-2016.

Colistin resistance mediated by mcr-1-harbouring plasmids is an emerging threat in Enterobacteriaceae, like Salmonella. Based on its major contribution to the diarrhoea burden, the epidemic state and threat of mcr-1-harbouring Salmonella in community-acquired infections should be estimated.This retrospective study analysed the mcr-1 gene incidence in Salmonella strains collected from a surveillance on diarrhoeal outpatients in Shanghai Municipality, China, 2006-2016. Molecular characteristics of the mcr-1-positive strains and their plasmids were determined by genome sequencing. The transfer abilities of these plasmids were measured with various conjugation strains, species, and serotypes.Among the 12,053 Salmonella isolates, 37 mcr-1-harbouring strains, in which 35 were serovar Typhimurium, were detected first in 2012 and with increasing frequency after 2015. Most patients infected with mcr-1-harbouring strains were aged <5?years. All strains, including fluoroquinolone-resistant and/or extended-spectrum ß-lactamase-producing strains, were multi-drug resistant. S. Typhimurium had higher mcr-1 plasmid acquisition ability compared with other common serovars. Phylogeny based on the genomes combined with complete plasmid sequences revealed some clusters, suggesting the presence of mcr-1-harbouring Salmonella outbreaks in the community. Most mcr-1-positive strains were clustered together with the pork strains, strongly suggesting pork consumption as a main infection source.The mcr-1-harbouring Salmonella prevalence in community-acquired diarrhoea displays a rapid increase trend, and the ESBL-mcr-1-harbouring Salmonella poses a threat for children. These findings highlight the necessary and significance of prohibiting colistin use in animals and continuous monitoring of mcr-1-harbouring Salmonella.Copyright © 2019. Published by Elsevier B.V.


April 21, 2020  |  

Complete nucleotide sequences of six blaCTX-M-1-encoding plasmids from Escherichia coli isolated from urinary tract and wound infections in dogs.

In a recent study, we presented the characterisation of extended-spectrum ß-lactamase (ESBL)-producing Enterobacteriaceae isolated from cats and dogs in Switzerland during 2012–2016 [1]. Six transmissible plasmids from Escherichia coli isolated from dogs randomly selected from this study were chosen for further analysis. Here we present the complete sequences of six blaCTX-M-1-harbouring plasmids.


April 21, 2020  |  

Occurrence and Characterization of mcr-1-Positive Escherichia coli Isolated From Food-Producing Animals in Poland, 2011-2016.

The emergence of plasmid-mediated colistin resistance (mcr genes) threatens the effectiveness of polymyxins, which are last-resort drugs to treat infections by multidrug- and carbapenem-resistant Gram-negative bacteria. Based on the occurrence of colistin resistance the aims of the study were to determine possible resistance mechanisms and then characterize the mcr-positive Escherichia coli. The research used material from the Polish national and EU harmonized antimicrobial resistance (AMR) monitoring programs. A total of 5,878 commensal E. coli from fecal samples of turkeys, chickens, pigs, and cattle collected in 2011-2016 were screened by minimum inhibitory concentration (MIC) determination for the presence of resistance to colistin (R) defined as R > 2 mg/L. Strains with MIC = 2 mg/L isolated in 2014-2016 were also included. A total of 128 isolates were obtained, and most (66.3%) had colistin MIC of 2 mg/L. PCR revealed mcr-1 in 80 (62.5%) isolates recovered from 61 turkeys, 11 broilers, 2 laying hens, 1 pig, and 1 bovine. No other mcr-type genes (including mcr-2 to -5) were detected. Whole-genome sequencing (WGS) of the mcr-1-positive isolates showed high diversity in the multi-locus sequence types (MLST) of E. coli, plasmid replicons, and AMR and virulence genes. Generally mcr-1.1 was detected on the same contig as the IncX4 (76.3%) and IncHI2 (6.3%) replicons. One isolate harbored mcr-1.1 on the chromosome. Various extended-spectrum beta-lactamase (blaSHV-12, blaCTX-M-1, blaCTX-M-15, blaTEM-30, blaTEM-52, and blaTEM-135) and quinolone resistance genes (qnrS1, qnrB19, and chromosomal gyrA, parC, and parE mutations) were present in the mcr-1.1-positive E. coli. A total of 49 sequence types (ST) were identified, ST354, ST359, ST48, and ST617 predominating. One isolate, identified as ST189, belonged to atypical enteropathogenic E. coli. Our findings show that mcr-1.1 has spread widely among production animals in Poland, particularly in turkeys and appears to be transferable mainly by IncX4 and IncHI2 plasmids spread across diverse E. coli lineages. Interestingly, most of these mcr-1-positive E. coli would remain undetected using phenotypic methods with the current epidemiological cut-off value (ECOFF). The appearance and spread of mcr-1 among various animals, but notably in turkeys, might be considered a food chain, and public health hazard.


April 21, 2020  |  

Complete Assembly of the Genome of an Acidovorax citrulli Strain Reveals a Naturally Occurring Plasmid in This Species.

Acidovorax citrulli is the causal agent of bacterial fruit blotch (BFB), a serious threat to cucurbit crop production worldwide. Based on genetic and phenotypic properties, A. citrulli strains are divided into two major groups: group I strains have been generally isolated from melon and other non-watermelon cucurbits, while group II strains are closely associated with watermelon. In a previous study, we reported the genome of the group I model strain, M6. At that time, the M6 genome was sequenced by MiSeq Illumina technology, with reads assembled into 139 contigs. Here, we report the assembly of the M6 genome following sequencing with PacBio technology. This approach not only allowed full assembly of the M6 genome, but it also revealed the occurrence of a ~53 kb plasmid. The M6 plasmid, named pACM6, was further confirmed by plasmid extraction, Southern-blot analysis of restricted fragments and obtention of M6-derivative cured strains. pACM6 occurs at low copy numbers (average of ~4.1 ± 1.3 chromosome equivalents) in A. citrulli M6 and contains 63 open reading frames (ORFs), most of which (55.6%) encoding hypothetical proteins. The plasmid contains several genes encoding type IV secretion components, and typical plasmid-borne genes involved in plasmid maintenance, replication and transfer. The plasmid also carries an operon encoding homologs of a Fic-VbhA toxin-antitoxin (TA) module. Transcriptome data from A. citrulli M6 revealed that, under the tested conditions, the genes encoding the components of this TA system are among the highest expressed genes in pACM6. Whether this TA module plays a role in pACM6 maintenance is still to be determined. Leaf infiltration and seed transmission assays revealed that, under tested conditions, the loss of pACM6 did not affect the virulence of A. citrulli M6. We also show that pACM6 or similar plasmids are present in several group I strains, but absent in all tested group II strains of A. citrulli.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.