X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Tuesday, April 21, 2020

Advantage of the F2:A1:B- IncF Pandemic Plasmid over IncC Plasmids in In Vitro Acquisition and Evolution of blaCTX-M Gene-Bearing Plasmids in Escherichia coli.

Despite a fitness cost imposed on bacterial hosts, large conjugative plasmids play a key role in the diffusion of resistance determinants, such as CTX-M extended-spectrum ß-lactamases. Among the large conjugative plasmids, IncF plasmids are the most predominant group, and an F2:A1:B- IncF-type plasmid encoding a CTX-M-15 variant was recently described as being strongly associated with the emerging worldwide Escherichia coli sequence type 131 (ST131)-O25b:H4 H30Rx/C2 sublineage. In this context, we investigated the fitness cost of narrow-range F-type plasmids, including the F2:A1:B- IncF-type CTX-M-15 plasmid, and of broad-range C-type plasmids in the K-12-like J53-2 E. coli strain. Although all plasmids imposed…

Read More »

Tuesday, April 21, 2020

Genomic and Functional Analysis of Emerging Virulent and Multidrug-Resistant Escherichia coli Lineage Sequence Type 648.

The pathogenic extended-spectrum-beta-lactamase (ESBL)-producing Escherichia coli lineage ST648 is increasingly reported from multiple origins. Our study of a large and global ST648 collection from various hosts (87 whole-genome sequences) combining core and accessory genomics with functional analyses and in vivo experiments suggests that ST648 is a nascent and generalist lineage, lacking clear phylogeographic and host association signals. By including large numbers of ST131 (n?=?107) and ST10 (n?=?96) strains for comparative genomics and phenotypic analysis, we demonstrate that the combination of multidrug resistance and high-level virulence are the hallmarks of ST648, similar to international high-risk clonal lineage ST131. Specifically, our in…

Read More »

Tuesday, April 21, 2020

Spreading Patterns of NDM-Producing Enterobacteriaceae in Clinical and Environmental Settings in Yangon, Myanmar.

The spread of carbapenemase-producing Enterobacteriaceae (CPE), contributing to widespread carbapenem resistance, has become a global concern. However, the specific dissemination patterns of carbapenemase genes have not been intensively investigated in developing countries, including Myanmar, where NDM-type carbapenemases are spreading in clinical settings. In the present study, we phenotypically and genetically characterized 91 CPE isolates obtained from clinical (n = 77) and environmental (n = 14) samples in Yangon, Myanmar. We determined the dissemination of plasmids harboring genes encoding NDM-1 and its variants using whole-genome sequencing and plasmid analysis. IncFII plasmids harboring blaNDM-5 and IncX3 plasmids harboring blaNDM-4 or blaNDM-7 were…

Read More »

Tuesday, April 21, 2020

One Health Genomic Surveillance of Escherichia coli Demonstrates Distinct Lineages and Mobile Genetic Elements in Isolates from Humans versus Livestock.

Livestock have been proposed as a reservoir for drug-resistant Escherichia coli that infect humans. We isolated and sequenced 431 E. coli isolates (including 155 extended-spectrum ß-lactamase [ESBL]-producing isolates) from cross-sectional surveys of livestock farms and retail meat in the East of England. These were compared with the genomes of 1,517 E. coli bacteria associated with bloodstream infection in the United Kingdom. Phylogenetic core genome comparisons demonstrated that livestock and patient isolates were genetically distinct, suggesting that E. coli causing serious human infection had not directly originated from livestock. In contrast, we observed highly related isolates from the same animal species…

Read More »

Tuesday, April 21, 2020

Emergence of a ST2570 Klebsiella pneumoniae isolate carrying mcr-1 and blaCTX-M-14 recovered from a bloodstream infection in China.

The worldwide emergence of the plasmid-borne colistin resistance mediated by mcr-1 gene not only extended our knowledge on colistin resistance, but also poses a serious threat to clinical and public health [1, 2]. Since its first discovery, mcr-1-carrying Enterobacteriaceae from human, animal, food, and environmental origins have been widely identified, but few mcr-1-positive clinical strains of Klebsiella pneumoniae have been reported so far, especially when associated with community-acquired infections [3, 4]. Here, we report the emergence of a colistin-resistant K. pneumoniae isolate, which belonged to a rare sporadic clone, co-carrying mcr-1 and blaCTX-M-14 genes simultaneous recovered from a community-acquired bloodstream…

Read More »

Tuesday, April 21, 2020

Genetic variation in the conjugative plasmidome of a hospital effluent multidrug resistant Escherichia coli strain.

Bacteria harboring conjugative plasmids have the potential for spreading antibiotic resistance through horizontal gene transfer. It is described that the selection and dissemination of antibiotic resistance is enhanced by stressors, like metals or antibiotics, which can occur as environmental contaminants. This study aimed at unveiling the composition of the conjugative plasmidome of a hospital effluent multidrug resistant Escherichia coli strain (H1FC54) under different mating conditions. To meet this objective, plasmid pulsed field gel electrophoresis, optical mapping analyses and DNA sequencing were used in combination with phenotype analysis. Strain H1FC54 was observed to harbor five plasmids, three of which were conjugative…

Read More »

Tuesday, April 21, 2020

Potential KPC-2 carbapenemase reservoir of environmental Aeromonas hydrophila and Aeromonas caviae isolates from the effluent of an urban wastewater treatment plant in Japan.

Aeromonas hydrophila and Aeromonas caviae adapt to saline water environments and are the most predominant Aeromonas species isolated from estuaries. Here, we isolated antimicrobial-resistant (AMR) Aeromonas strains (A. hydrophila GSH8-2 and A. caviae GSH8M-1) carrying the carabapenemase blaKPC-2 gene from a wastewater treatment plant (WWTP) effluent in Tokyo Bay (Japan) and determined their complete genome sequences. GSH8-2 and GSH8M-1 were classified as newly assigned sequence types ST558 and ST13, suggesting no supportive evidence of clonal dissemination. The strains appear to have acquired blaKPC-2 -positive IncP-6-relative plasmids (pGSH8-2 and pGSH8M-1-2) that share a common backbone with plasmids in Aeromonas sp. ASNIH3…

Read More »

Tuesday, April 21, 2020

Transmission of ESBL-producing Escherichia coli between broilers and humans on broiler farms.

ESBL and AmpC ß-lactamases are an increasing concern for public health. Studies suggest that ESBL/pAmpC-producing Escherichia coli and their plasmids carrying antibiotic resistance genes can spread from broilers to humans working or living on broiler farms. These studies used traditional typing methods, which may not have provided sufficient resolution to reliably assess the relatedness of these isolates.Eleven suspected transmission events among broilers and humans living/working on eight broiler farms were investigated using whole-genome short-read (Illumina) and long-read sequencing (PacBio). Core genome MLST (cgMLST) was performed to investigate the occurrence of strain transmission. Horizontal plasmid and gene transfer were analysed using…

Read More »

Tuesday, April 21, 2020

Complete genome sequence of an IMP-8, CTX-M-14, CTX-M-3 and QnrS1 co-producing Enterobacter asburiae isolate from a patient with wound infection.

The aim of this study was to investigate the characteristics and complete genome sequence of an IMP-8, CTX-M-14, CTX-M-3 and QnrS1 co-producing multidrug-resistant Enterobacter asburiae isolate (EN3600) from a patient with wound infection.Species identification was confirmed by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF/MS). Carbapenemase genes were identified by PCR and Sanger sequencing. The complete genome sequence of E. asburiae EN3600 was obtained using a PacBio RS II platform. Genome annotation was done by Rapid Annotation using Subsystem Technology (RAST) server. Acquired antimicrobial resistance genes (ARGs) and plasmid replicons were detected using ResFinder 2.1 and PlasmidFinder 1.3, respectively.The genome of…

Read More »

Tuesday, April 21, 2020

Integration of two pKPX-2-derived antibiotic resistance islands in the genome of an ESBL-producing Klebsiella pneumoniae ST3483 from Lebanon.

Contamination of fresh water with clinically important Gram-negative bacteria in Lebanon is being investigated in-depth, especially with evidence of dissemination into clinical settings. This study aimed to report the draft genome sequence of a Klebsiella pneumoniae strain with an integrated plasmid segment harbouring two antibiotic resistance islands (ARI). It is believed that this is the first report of plasmid antibiotic resistance islands integration in the genome of K. pneumoniae.Whole genome sequencing of the isolate was performed using Sequel platform. The genome was assembled using HGAP4. Analysis was conducted by uploading the sequence to the online databases from the Center for…

Read More »

Tuesday, April 21, 2020

Characterization of NDM-5- and CTX-M-55-coproducing Escherichia coli GSH8M-2 isolated from the effluent of a wastewater treatment plant in Tokyo Bay.

New Delhi metallo-ß-lactamase (NDM)-5-producing Enterobacteriaceae have been detected in rivers, sewage, and effluents from wastewater treatment plants (WWTPs). Environmental contamination due to discharged effluents is of particular concern as NDM variants may be released into waterways, thereby posing a risk to humans. In this study, we collected effluent samples from a WWTP discharged into a canal in Tokyo Bay, Japan.Testing included the complete genome sequencing of Escherichia coli GSH8M-2 isolated from the effluent as well as a gene network analysis.The complete genome sequencing of GSH8M-2 revealed that it was an NDM-5-producing E. coli strain sequence type ST542, which carries multiple…

Read More »

Tuesday, April 21, 2020

Antimicrobial resistance-encoding plasmid clusters with heterogeneous MDR regions driven by IS26 in a single Escherichia coli isolate.

IS26-flanked transposons played an increasingly important part in the mobilization and development of resistance determinants. Heterogeneous resistance-encoding plasmid clusters with polymorphic MDR regions (MRRs) conferred by IS26 in an individual Escherichia coli isolate have not yet been detected.To characterize the complete sequence of a novel blaCTX-M-65- and fosA3-carrying IncZ-7 plasmid with dynamic MRRs from an E. coli isolate, and to depict the mechanism underlying the spread of resistance determinants and genetic polymorphisms.The molecular characterization of a strain carrying blaCTX-M-65 and fosA3 was analysed by antimicrobial susceptibility testing and MLST. The transferability of a plasmid bearing blaCTX-M-65 and fosA3 was determined…

Read More »

Tuesday, April 21, 2020

Epidemiologic and genomic insights on mcr-1-harbouring Salmonella from diarrhoeal outpatients in Shanghai, China, 2006-2016.

Colistin resistance mediated by mcr-1-harbouring plasmids is an emerging threat in Enterobacteriaceae, like Salmonella. Based on its major contribution to the diarrhoea burden, the epidemic state and threat of mcr-1-harbouring Salmonella in community-acquired infections should be estimated.This retrospective study analysed the mcr-1 gene incidence in Salmonella strains collected from a surveillance on diarrhoeal outpatients in Shanghai Municipality, China, 2006-2016. Molecular characteristics of the mcr-1-positive strains and their plasmids were determined by genome sequencing. The transfer abilities of these plasmids were measured with various conjugation strains, species, and serotypes.Among the 12,053 Salmonella isolates, 37 mcr-1-harbouring strains, in which 35 were serovar…

Read More »

Tuesday, April 21, 2020

Complete nucleotide sequences of six blaCTX-M-1-encoding plasmids from Escherichia coli isolated from urinary tract and wound infections in dogs.

In a recent study, we presented the characterisation of extended-spectrum ß-lactamase (ESBL)-producing Enterobacteriaceae isolated from cats and dogs in Switzerland during 2012–2016 [1]. Six transmissible plasmids from Escherichia coli isolated from dogs randomly selected from this study were chosen for further analysis. Here we present the complete sequences of six blaCTX-M-1-harbouring plasmids.

Read More »

Tuesday, April 21, 2020

Genome and plasmid diversity of Extended-Spectrum ß-Lactamase-producing Escherichia coli ST131 – tracking phylogenetic trajectories with Bayesian inference.

Clonal lineages of ESBL (Extended-Spectrum ß-Lactamase)-producing E. coli belonging to sequence type 131 (ST131) have disseminated globally during the last 30 years, leading to an increased prevalence of resistance to fluoroquinolones and extended-spectrum cephalosporins in clinical isolates of E. coli. We aimed to study if Swedish ESBL-producing ST131 isolates originated from single or multiple introductions to the population by assessing the amount of genetic variation, on chromosomal and plasmid level, between Swedish and international E. coli ST131. Bayesian inference of Swedish E. coli ST131 isolates (n?=?29), sequenced using PacBio RSII, together with an international ST131 dataset showed that the Swedish…

Read More »

1 2

Subscribe for blog updates:

Archives