Menu
June 1, 2021  |  

Comparative genomics of Shiga toxin-producing Escherichia coli O145:H28 strains associated with the 2007 Belgium and 2010 US outbreaks.

Shiga toxin-producing Escherichia coli (STEC) is an emerging pathogen. Recently there has been a global in the number of outbreaks caused by non-O157 STECs, typically involving six serogroups O26, O45, 0103, 0111, and 0145. STEC O145:H28 has been associated with severe human disease including hemolytic-uremic syndrome (HUS), and is demonstrated by the 2007 Belgian ice-cream-associated outbreak and 2010 US lettuce-associated outbreak, with over 10% of patients developing HUS in each. The goal of this work was to do comparative genomics of strains, clinical and environmental, to investigate genome diversity and virulence evolution of this important foodborne pathogen.


June 1, 2021  |  

New discoveries from closing Salmonella genomes using Pacific Biosciences continuous long reads.

The newer hierarchical genome assembly process (HGAP) performs de novo assembly using data from a single PacBio long insert library. To assess the benefits of this method, DNA from several Salmonella enterica serovars was isolated from a pure culture. Genome sequencing was performed using Pacific Biosciences RS sequencing technology. The HGAP process enabled us to close sixteen Salmonella subsp. enterica genomes and their associated mobile elements: The ten serotypes include: Salmonella enterica subsp. enterica serovar Enteritidis (S. Enteritidis) S. Bareilly, S. Heidelberg, S. Cubana, S. Javiana and S. Typhimurium, S. Newport, S. Montevideo, S. Agona, and S. Tennessee. In addition, we were able to detect novel methyltransferases (MTases) by using the Pacific Biosciences kinetic score distributions showing that each serovar appears to have a novel methylation pattern. For example while all Salmonella serovars examined so far have methylase specific activity for 5’-GATC-3’/3’-CTAG-5’ and 5’-CAGAG-3’/3’-GTCTC-5’ (underlined base indicates a modification), S. Heidelberg is uniquely specific for 5’-ACCANCC-3’/3’-TGGTNGG-5’, while S. Typhimurium has uniquely methylase specific for 5′-GATCAG-3’/3′- CTAGTC-5′ sites, for the samples examined so far. We believe that this may be due to the unique environments and phages that these serotypes have been exposed to. Furthermore, our analysis identified and closed a variety of plasmids such as mobilization plasmids, antimicrobial resistance plasmids and IncX plasmids carrying a Type IV secretion system (T4SS). The VirB/D4 T4SS apparatus is important in that it assists with rapid dissemination of antibiotic resistance and virulence determinants. Presently, only limited information exists regarding the genotypic characterization of drug resistance in S. Heidelberg isolates derived from various host species. Here, we characterize two S. Heidelberg outbreak isolates from two different outbreaks. Both isolates contain the IncX plasmid of approximately 35 kb, and carried the genes virB1, virB2, virB3/4, virB5, virB6, virB7, virB8, virB9, virB10, virB11, virD2, and virD4, that are associated with the T4SS. In addition, the outbreak isolate associated with ground turkey carries a 4,473 bp mobilization plasmid and an incompatibility group (Inc) I1 antimicrobial resistance plasmid encoding resistance to gentamicin (aacC2), beta-lactam (bl2b_tem), streptomycin (aadAI) and tetracycline (tetA, tetR) while the outbreak isolate associated with chicken breast carries the IncI1 plasmid encoding resistance to gentamicin (aacC2), streptomycin (aadAI) and sulfisoxazole (sul1). Using this new technology we explored the genetic elements present in resistant pathogens which will achieve a better understanding of the evolution of Salmonella.


June 1, 2021  |  

Accurately surveying uncultured microbial species with SMRT Sequencing

Background: Microbial ecology is reshaping our understanding of the natural world by revealing the large phylogenetic and functional diversity of microbial life. However the vast majority of these microorganisms remain poorly understood, as most cultivated representatives belong to just four phylogenetic groups and more than half of all identified phyla remain uncultivated. Characterization of this microbial ‘dark matter’ will thus greatly benefit from new metagenomic methods for in situ analysis. For example, sensitive high throughput methods for the characterization of community composition and structure from the sequencing of conserved marker genes. Methods: Here we utilize Single Molecule Real-Time (SMRT) sequencing of full-length 16S rRNA amplicons to phylogenetically profile microbial communities to below the genus-level. We test this method on a mock community of known composition, as well as a previously studied microbial community from a lake known to predominantly contain poorly characterized phyla. These results are compared to traditional 16S tag sequencing from short-read technologies and subsets of the full-length data corresponding to the same regions of the 16S gene. Results: We explore the benefits of using full-length amplicons for estimating community structure and diversity. In addition, we investigate the possible effects of context-specific and GC-content biases known to affect short-read sequencing technologies on the predicted community structure. We characterize the potential benefits of profiling metagenomic communities with full-length 16S rRNA genes from SMRT sequencing relative to standard methods.


June 1, 2021  |  

The resurgence of reference quality genome sequence.

Since the advent of Next-Generation Sequencing (NGS), the cost of de novo genome sequencing and assembly have dropped precipitately, which has spurred interest in genome sequencing overall. Unfortunately the contiguity of the NGS assembled sequences, as well as the accuracy of these assemblies have suffered. Additionally, most NGS de novo assemblies leave large portions of genomes unresolved, and repetitive regions are often collapsed. When compared to the reference quality genome sequences produced before the NGS era, the new sequences are highly fragmented and often prove to be difficult to properly annotate. In some cases the contiguous portions are smaller than the average gene size making the sequence not nearly as useful for biologists as the earlier reference quality genomes including of Human, Mouse, C. elegans, or Drosophila. Recently, new 3rd generation sequencing technologies, long-range molecular techniques, and new informatics tools have facilitated a return to high quality assembly. We will discuss the capabilities of the technologies and assess their impact on assembly projects across the tree of life from small microbial and fungal genomes through large plant and animal genomes. Beyond improvements to contiguity, we will focus on the additional biological insights that can be made with better assemblies, including more complete analysis genes in their flanking regulatory context, in-depth studies of transposable elements and other complex gene families, and long-range synteny analysis of entire chromosomes. We will also discuss the need for new algorithms for representing and analyzing collections of many complete genomes at once.


June 1, 2021  |  

Low-input long-read sequencing for complete microbial genomes and metagenomic community analysis.

Microbial genome sequencing can be done quickly, easily, and efficiently with the PacBio sequencing instruments, resulting in complete de novo assemblies. Alternative protocols have been developed to reduce the amount of purified DNA required for SMRT Sequencing, to broaden applicability to lower-abundance samples. If 50-100 ng of microbial DNA is available, a 10-20 kb SMRTbell library can be made. A 2 kb SMRTbell library only requires a few ng of gDNA when carrier DNA is added to the library. The resulting libraries can be loaded onto multiple SMRT Cells, yielding more than enough data for complete assembly of microbial genomes using the SMRT Portal assembly program HGAP, plus base-modification analysis. The entire process can be done in less than 3 days by standard laboratory personnel. This approach is particularly important for the analysis of metagenomic communities, in which genomic DNA is often limited. From these samples, full-length 16S amplicons can be generated, prepped with the standard SMRTbell library prep protocol, and sequenced. Alternatively, a 2 kb sheared library, made from a few ng of input DNA, can also be used to elucidate the microbial composition of a community, and may provide information about biochemical pathways present in the sample. In both these cases, 1-2 kb reads with >99% accuracy can be obtained from Circular Consensus Sequencing.


June 1, 2021  |  

Metagenomes of native and electrode-enriched microbial communities from the Soudan Iron Mine.

Despite apparent carbon limitation, anoxic deep subsurface brines at the Soudan Underground Iron Mine harbor active microbial communities. To characterize these assemblages, we performed shotgun metagenomics of native and enriched samples. Following enrichment on poised electrodes and long read sequencing, we recovered from the metagenome the closed, circular genome of a novel Desulfuromonas sp. with remarkable genomic features that were not fully resolved by short read assembly alone. This organism was essentially absent in unenriched Soudan communities, indicating that electrodes are highly selective for putative metal reducers. Native community metagenomes suggest that carbon cycling is driven by methyl-C1 metabolism, in particular methylotrophic methanogenesis. Our results highlight the promising potential for long reads in metagenomic surveys of low-diversity environments.


June 1, 2021  |  

Profiling metagenomic communities using circular consensus and Single Molecule, Real-Time Sequencing.

There are many sequencing-based approaches to understanding complex metagenomic communities spanning targeted amplification to whole-sample shotgun sequencing. While targeted approaches provide valuable data at low sequencing depth, they are limited by primer design and PCR amplification. Whole-sample shotgun experiments generally use short-read, second-generation sequencing, which results in data processing difficulties. For example, reads less than 1 kb in length will likely not cover a complete gene or region of interest, and will require assembly. This not only introduces the possibility of incorrectly combining sequence from different community members, it requires a high depth of coverage. As such, rare community members may not be represented in the resulting assembly. Circular-consensus, single molecule, real-time (SMRT) Sequencing reads in the 1-2 kb range, with >99% accuracy can be efficiently generated for low amounts of input DNA. 10 ng of input DNA sequenced in 4 SMRT Cells would generate >100,000 such reads. While throughput is low compared to second-generation sequencing, the reads are a true random sampling of the underlying community, since SMRT Sequencing has been shown to have no sequence-context bias. Long read lengths mean that that it would be reasonable to expect a high number of the reads to include gene fragments useful for analysis.


June 1, 2021  |  

Profiling metagenomic communities using circular consensus and Single Molecule, Real-Time Sequencing

There are many sequencing-based approaches to understanding complex metagenomic communities, spanning targeted amplification to whole-sample shotgun sequencing. While targeted approaches provide valuable data at low sequencing depth, they are limited by primer design and PCR amplification. Whole-sample shotgun experiments require a high depth of coverage. As such, rare community members may not be represented in the resulting assembly. Circular-consensus, Single Molecule, Real-Time (SMRT) Sequencing reads in the 1-2 kb range, with >99% consensus accuracy, can be efficiently generated for low amounts of input DNA, e.g. as little as 10 ng of input DNA sequenced in 4 SMRT Cells can generate >100,000 such reads. While throughput is low compared to second-generation sequencing, the reads are a true random sampling of the underlying community. Long read lengths translate to a high number of the reads harboring full genes or even full operons for downstream analysis. Here we present the results of circular-consensus sequencing on a mock metagenomic community with an abundance range of multiple orders of magnitude, and compare the results with both 16S and shotgun assembly methods. We show that even with relatively low sequencing depth, the long-read, assembly-free, random sampling allows to elucidate meaningful information from the very low-abundance community members. For example, given the above low-input sequencing approach, a community member at 1/1,000 relative abundance would generate 100 1-2 kb sequence fragments having 99% consensus accuracy, with a high probability of containing a gene fragment useful for taxonomic classification or functional insight.


June 1, 2021  |  

An update on goat genomics

Goats are specialized in dairy, meat and fiber production, being adapted to a wide range of environmental conditions and having a large economic impact in developing countries. In the last years, there have been dramatic advances in the knowledge of the structure and diversity of the goat genome/transcriptome and in the development of genomic tools, rapidly narrowing the gap between goat and related species such as cattle and sheep. Major advances are: 1) publication of a de novo goat genome reference sequence; 2) Development of whole genome high density RH maps, and; 3) Design of a commercial 50K SNP array. Moreover, there are currently several projects aiming at improving current genomic tools and resources. An improved assembly of the goat genome using PacBio reads is being produced, and the design of new SNP arrays is being studied to accommodate the specific needs of this species in the context of very large scale genotyping projects (i.e. breed characterization at an international scale and genomic selection) and parentage analysis. As in other species, the focus has now turned to the identification of causative mutations underlying the phenotypic variation of traits. In addition, since 2014, the ADAPTmap project (www.goatadaptmap.org) has gathered data to explore the diversity of caprine populations at a worldwide scale by using a wide variety of approaches and data.


June 1, 2021  |  

Profiling the microbiome in fecal microbiota transplantation using circular consensus and Single Molecule, Real-Time Sequencing

There are many sequencing-based approaches to understanding complex metagenomic communities spanning targeted amplification to whole-sample shotgun sequencing. While targeted approaches provide valuable data at low sequencing depth, they are limited by primer design and PCR. Whole-sample shotgun experiments generally use short-read sequencing, which results in data processing difficulties. For example, reads less than 500bp in length will rarely cover a complete gene or region of interest, and will require assembly. This not only introduces the possibility of incorrectly combining sequence from different community members, it requires a high depth of coverage. As such, rare community members may not be represented in the resulting assembly. Circular-consensus, single molecule, real-time (SMRT®) Sequencing reads in the 1-3kb range, with >99% accuracy can be efficiently generated for low amounts of input DNA. 10 ng of input DNA sequenced in 4 SMRT Cells on the PacBio RS II would generate >100,000 such reads. While throughput is lower compared to short-read sequencing methods, the reads are a true random sampling of the underlying community since SMRT Sequencing has been shown to have very low sequence-context bias. With reads >1 kb at >99% accuracy it is reasonable to expect a high percentage of reads include gene fragments useful for analysis without the need for de novo assembly. Here we present the results of circular consensus sequencing for an individual’s microbiome, before and after undergoing fecal microbiota transplantation (FMT) in order to treat a chronic Clostridium difficile infection. We show that even with relatively low sequencing depth, the long-read, assembly-free, random sampling allows us to profile low abundance community members at the species level. We also show that using shotgun sampling with long reads allows a level of functional insight not possible with classic targeted 16S, or short read sequencing, due to entire genes being covered in single reads.


June 1, 2021  |  

Low-input long-read sequencing for complete microbial genomes and metagenomic community analysis

Microbial genome sequencing can be done quickly, easily, and efficiently with the PacBio sequencing instruments, resulting in complete de novo assemblies. Alternative protocols have been developed to reduce the amount of purified DNA required for SMRT Sequencing, to broaden applicability to lower-abundance samples. If 50-100 ng of microbial DNA is available, a 10-20 kb SMRTbell library can be made. The resulting library can be loaded onto multiple SMRT Cells, yielding more than enough data for complete assembly of microbial genomes using the SMRT Portal assembly program HGAP, plus base modification analysis. The entire process can be done in less than 3 days by standard laboratory personnel. This approach is particularly important for analysis of metagenomic communities, in which genomic DNA is often limited. From these samples, full-length 16S amplicons can be generated, prepped with the standard SMRTbell library prep protocol, and sequenced. Alternatively, a 2 kb sheared library, made from a few ng of input DNA, can also be used to elucidate the microbial composition of a community, and may provide information about biochemical pathways present in the sample. In both these cases, 1-2 kb reads with >99.9% accuracy can be obtained from Circular Consensus Sequencing.


June 1, 2021  |  

Workflow for processing high-throughput, Single Molecule, Real-Time Sequencing data for analyzing the microbiome of patients undergoing fecal microbiota transplantation

There are many sequencing-based approaches to understanding complex metagenomic communities spanning targeted amplification to whole-sample shotgun sequencing. While targeted approaches provide valuable data at low sequencing depth, they are limited by primer design and PCR. Whole-sample shotgun experiments generally use short-read sequencing, which results in data processing difficulties. For example, reads less than 500 bp in length will rarely cover a complete gene or region of interest, and will require assembly. This not only introduces the possibility of incorrectly combining sequence from different community members, it requires a high depth of coverage. As such, rare community members may not be represented in the resulting assembly. Circular-consensus, Single Molecule, Real-Time (SMRT) Sequencing reads in the 1-3 kb range, with >99% accuracy can be generated using the previous generation PacBio RS II or, in much higher throughput, using the new Sequel System. While throughput is lower compared to short-read sequencing methods, the reads are a true random sampling of the underlying community since SMRT Sequencing has been shown to have very low sequence-context bias. With single-molecule reads >1 kb at >99% consensus accuracy, it is reasonable to expect a high percentage of reads to include genes or gene fragments useful for analysis without the need for de novo assembly. Here we present the results of circular consensus sequencing for an individual’s microbiome, before and after undergoing fecal microbiota transplantation (FMT) in order to treat a chronic Clostridium difficile infection. We show that even with relatively low sequencing depth, the long-read, assembly-free, random sampling allows us to profile low abundance community members at the species level. We also show that using shotgun sampling with long reads allows a level of functional insight not possible with classic targeted 16S, or short read sequencing, due to entire genes being covered in single reads.


June 1, 2021  |  

Profiling complex population genomes with highly accurate single molecule reads: cow rumen microbiomes

Determining compositions and functional capabilities of complex populations is often challenging, especially for sequencing technologies with short reads that do not uniquely identify organisms or genes. Long-read sequencing improves the resolution of these mixed communities, but adoption for this application has been limited due to concerns about throughput, cost and accuracy. The recently introduced PacBio Sequel System generates hundreds of thousands of long and highly accurate single-molecule reads per SMRT Cell. We investigated how the Sequel System might increase understanding of metagenomic communities. In the past, focus was largely on taxonomic classification with 16S rRNA sequencing. Recent expansion to WGS sequencing enables functional profiling as well, with the ultimate goal of complete genome assemblies. Here we compare the complex microbiomes in 5 cow rumen samples, for which Illumina WGS sequence data was also available. To maximize the PacBio single-molecule sequence accuracy, libraries of 2 to 3 kb were generated, allowing many polymerase passes per molecule. The resulting reads were filtered at predicted single-molecule accuracy levels up to 99.99%. Community compositions of the 5 samples were compared with Illumina WGS assemblies from the same set of samples, indicating rare organisms were often missed with Illumina. Assembly from PacBio CCS reads yielded a contig >100 kb in length with 6-fold coverage. Mapping of Illumina reads to the 101 kb contig verified the PacBio assembly and contig sequence. These results illustrate ways in which long accurate reads benefit analysis of complex communities.


June 1, 2021  |  

Profiling complex communities with highly accurate single molecule reads: cow rumen microbiomes

Determining compositions and functional capabilities of complex populations is often challenging, especially for sequencing technologies with short reads that do not uniquely identify organisms or genes. Long-read sequencing improves the resolution of these mixed communities, but adoption for this application has been limited due to concerns about throughput, cost and accuracy. The recently introduced PacBio Sequel System generates hundreds of thousands of long and highly accurate single-molecule reads per SMRT Cell. We investigated how the Sequel System might increase understanding of metagenomic communities. In the past, focus was largely on taxonomic classification with 16S rRNA sequencing. Recent expansion to WGS sequencing enables functional profiling as well, with the ultimate goal of complete genome assemblies. Here we compare the complex microbiomes in 5 cow rumen samples, for which Illumina WGS sequence data was also available. To maximize the PacBio single-molecule sequence accuracy, libraries of 2 to 3 kb were generated, allowing many polymerase passes per molecule. The resulting reads were filtered at predicted single-molecule accuracy levels up to 99.99%. Community compositions of the 5 samples were compared with Illumina WGS assemblies from the same set of samples, indicating rare organisms were often missed with Illumina. Assembly from PacBio CCS reads yielded a contig >100 kb in length with 6-fold coverage. Mapping of Illumina reads to the 101 kb contig verified the PacBio assembly and contig sequence. Scaffolding with reads from a PacBio unsheared library produced a complete genome of 2.4 Mb. These results illustrate ways in which long accurate reads benefit analysis of complex communities.


June 1, 2021  |  

Using the PacBio Sequel System to taxonomically and functionally classify metagenomic samples in a trial of patients undergoing fecal microbiota transplantation

Whole-sample shotgun sequencing can provide a more detailed view of a metagenomic community than 16S sequencing, but its use in multi-sample experiments is limited by throughput, cost and analysis complexity. While short-read sequencing technologies offer higher throughput, read lengthss less fewer than 500 bp will rarely cover a gene of interest, and necessitate assembly before further analysis. Assembling large fragments requires sampling each community member at a high depth, significantly increasing the amount of sequencing needed, and limiting the analysis of rare community members. Assembly methods also risk It is also possible to incorrectly combine combining sequences from different community members.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.