fbpx
X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Sunday, July 7, 2019

Complete genome sequence of a vancomycin-resistant sequence type 203 Enterococcus faecium strain with vanA belonging to complex type 859.

In 2014, the first vancomycin-resistant (encoded by vanA) Enterococcus faecium isolate belonging to sequence type 203 (ST203) and complex type 859 (CT859) was detected in Denmark. In 2016, 64% of the Danish clinical vanA E. faecium isolates belonged to ST203 and CT859. Using Pacific Biosciences (PacBio) RS II sequencing, we describe the genome of ST203 CT859 vanA E. faecium.

Read More »

Sunday, July 7, 2019

Bioaugmentated activated sludge degradation of progesterone: Kinetics and mechanism

Progesterone (PGT) is not completely removed in conventional treatment plants, and the processing results may have adverse effects on aquatic organisms. In this study, an effective PGT-degradation bacterium, Rhodococcus sp. HYW, was newly isolated from the pharmaceutical plant and was used to augment degradation of PGT. When grown in a mineral medium (MM) containing a trace amount of PGT (500?µg/L) as the sole carbon and energy source, the results show that 99% of PGT was degraded within 1?h and followed the first-order reaction kinetics. Bioaugmentation of PGT-contaminated activated sludge greatly enhanced the PGT degradation rate (~91%) and its derivatives degradation…

Read More »

Sunday, July 7, 2019

Comparative genomic analysis of Staphylococcus lugdunensis shows a closed pan-genome and multiple barriers to horizontal gene transfer.

Coagulase negative staphylococci (CoNS) are commensal bacteria on human skin. Staphylococcus lugdunensis is a unique CoNS which produces various virulence factors and may, like S. aureus, cause severe infections, particularly in hospital settings. Unlike other staphylococci, it remains highly susceptible to antimicrobials, and genome-based phylogenetic studies have evidenced a highly conserved genome that distinguishes it from all other staphylococci.We demonstrate that S. lugdunensis possesses a closed pan-genome with a very limited number of new genes, in contrast to other staphylococci that have an open pan-genome. Whole-genome nucleotide and amino acid identity levels are also higher than in other staphylococci. We…

Read More »

Sunday, July 7, 2019

Fe-S cluster assembly in oxymonads and related protists.

The oxymonad Monocercomonoides exilis was recently reported to be the first eukaryote that has completely lost the mitochondrial compartment. It was proposed that an important prerequisite for such a radical evolutionary step was the acquisition of the SUF Fe-S cluster assembly pathway from prokaryotes, making the mitochondrial ISC pathway dispensable. We have investigated genomic and transcriptomic data from six oxymonad species and their relatives, composing the group Preaxostyla (Metamonada, Excavata), for the presence and absence of enzymes involved in Fe-S cluster biosynthesis. None possesses enzymes of mitochondrial ISC pathway and all apparently possess the SUF pathway, composed of SufB, C,…

Read More »

Sunday, July 7, 2019

One complete and three draft genome sequences of four Brochothrix thermosphacta strains, CD 337, TAP 175, BSAS1 3 and EBP 3070.

Brochothrix thermosphacta is one of the dominant bacterial species associated with spoilage of chilled meat and seafood products through the production of various metabolites responsible for off-odors. However, metabolic pathways leading to meat and seafood spoilage are not all well known. The production of spoiling molecules seems to depend both on strains and on food matrix. Several B. thermosphacta genome sequences have been reported, all issued from meat isolates. Here, we report four genome sequences, one complete and three as drafts. The four B. thermosphacta strains CD 337, TAP 175, BSAS1 3, and EBP 3070 were isolated from different ecological…

Read More »

Sunday, July 7, 2019

Lifestyle of Lactobacillus hordei isolated from water kefir based on genomic, proteomic and physiological characterization.

Water kefir is a traditional fermented beverage made from sucrose, water, kefir granules, dried or fresh fruits. In our water kefir granules, Lactobacillus (L.) hordei is one of the predominant lactic acid bacteria (LAB) species of this presumed symbiotic consortium. It faces abundant sucrose versus limitation of amino- and fatty acids in an acidic environment. Sequencing of the genome of L. hordei TMW 1.1822 revealed one chromosome plus three plasmids. The size of the chromosome was 2.42?Mbp with a GC content of 35% GC and 2461 predicted coding sequences. Furthermore, we identified 1474 proteins upon growth on water kefir medium.…

Read More »

Sunday, July 7, 2019

Emergence of tigecycline resistance in Escherichia coli co-producing MCR-1 and NDM-5 during tigecycline salvage treatment.

Here, we report a case of severe infection caused by Escherichia coli that harbored mcr-1, blaNDM-5, and acquired resistance to tigecycline during tigecycline salvage therapy.Antimicrobial susceptibility testing, Southern blot hybridization, and complete genome sequence of the strains were carried out. The genetic characteristics of the mcr-1 and blaNDM-5 plasmids were analyzed. The whole genome sequencing of mcr-1-containing plasmid was completed. Finally, putative single nucleotide polymorphisms and deletion mutations in the tigecycline-resistant strain were predicted.Three E. coli isolates were obtained from ascites, pleural effusion, and stool of a patient; they were resistant to almost all the tested antibiotics. The first two…

Read More »

1 17 18 19

Subscribe for blog updates:

Archives