X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Tuesday, April 21, 2020

Integrating multiple genomic technologies to investigate an outbreak of carbapenemase-producing Enterobacter hormaechei

Carbapenem-resistant Enterobacteriaceae (CRE) represent one of the most urgent threats to human health posed by antibiotic resistant bacteria. Enterobacter hormaechei and other members of the Enterobacter cloacae complex are the most commonly encountered Enterobacter spp. within clinical settings, responsible for numerous outbreaks and ultimately poorer patient outcomes. Here we applied three complementary whole genome sequencing (WGS) technologies to characterise a hospital cluster of blaIMP-4 carbapenemase-producing E. hormaechei.In response to a suspected CRE outbreak in 2015 within an Intensive Care Unit (ICU)/Burns Unit in a Brisbane tertiary referral hospital we used Illumina sequencing to determine that all outbreak isolates were sequence…

Read More »

Tuesday, April 21, 2020

Detection of VIM-1-Producing Enterobacter cloacae and Salmonella enterica Serovars Infantis and Goldcoast at a Breeding Pig Farm in Germany in 2017 and Their Molecular Relationship to Former VIM-1-Producing S. Infantis Isolates in German Livestock Production.

In 2011, VIM-1-producing Salmonella enterica serovar Infantis and Escherichia coli were isolated for the first time in four German livestock farms. In 2015/2016, highly related isolates were identified in German pig production. This raised the issue of potential reservoirs for these isolates, the relation of their mobile genetic elements, and potential links between the different affected farms/facilities. In a piglet-producing farm suspicious for being linked to some blaVIM-1 findings in Germany, fecal and environmental samples were examined for the presence of carbapenemase-producing Enterobacteriaceae and Salmonella spp. Newly discovered isolates were subjected to Illumina whole-genome sequencing (WGS) and S1 pulsed-field gel…

Read More »

Tuesday, April 21, 2020

Spreading Patterns of NDM-Producing Enterobacteriaceae in Clinical and Environmental Settings in Yangon, Myanmar.

The spread of carbapenemase-producing Enterobacteriaceae (CPE), contributing to widespread carbapenem resistance, has become a global concern. However, the specific dissemination patterns of carbapenemase genes have not been intensively investigated in developing countries, including Myanmar, where NDM-type carbapenemases are spreading in clinical settings. In the present study, we phenotypically and genetically characterized 91 CPE isolates obtained from clinical (n = 77) and environmental (n = 14) samples in Yangon, Myanmar. We determined the dissemination of plasmids harboring genes encoding NDM-1 and its variants using whole-genome sequencing and plasmid analysis. IncFII plasmids harboring blaNDM-5 and IncX3 plasmids harboring blaNDM-4 or blaNDM-7 were…

Read More »

Tuesday, April 21, 2020

Diverse Vectors and Mechanisms Spread New Delhi Metallo-ß-Lactamases among Carbapenem-Resistant Enterobacteriaceae in the Greater Boston Area.

New Delhi metallo-beta-lactamases (NDMs) are an uncommon but emerging cause of carbapenem resistance in the United States. Genomic factors promoting their domestic spread remain poorly characterized. A prospective genomic surveillance program among Boston-area hospitals identified multiple new occurrences of NDM-carrying strains of Escherichia coli and Enterobacter cloacae complex in inpatient and outpatient settings, representing the first occurrences of NDM-mediated resistance since initiating genomic surveillance in 2011. Cases included domestic patients with no international exposures. PacBio sequencing of isolates identified strain characteristics, resistance genes, and the complement of mobile vectors mediating spread. Analyses revealed a common 3,114-bp region containing the blaNDM…

Read More »

Tuesday, April 21, 2020

Genetic variation in the conjugative plasmidome of a hospital effluent multidrug resistant Escherichia coli strain.

Bacteria harboring conjugative plasmids have the potential for spreading antibiotic resistance through horizontal gene transfer. It is described that the selection and dissemination of antibiotic resistance is enhanced by stressors, like metals or antibiotics, which can occur as environmental contaminants. This study aimed at unveiling the composition of the conjugative plasmidome of a hospital effluent multidrug resistant Escherichia coli strain (H1FC54) under different mating conditions. To meet this objective, plasmid pulsed field gel electrophoresis, optical mapping analyses and DNA sequencing were used in combination with phenotype analysis. Strain H1FC54 was observed to harbor five plasmids, three of which were conjugative…

Read More »

Tuesday, April 21, 2020

Characterization of a carbapenem- and colistin-resistant Enterobacter cloacae carrying Tn6901 in blaNDM-1 genomic context.

We report a clinical strain of Enterobacter cloacae, PIMB10EC27, isolated in Vietnam in 2010 that was resistant to 21 of 26 tested antibiotics, including carbapenems (MICs >64 µg/mL) and colistin (MIC >128 µg/mL). The complete genome of strain PIMB10EC27 was sequenced by PacBio RSII and the Illumina Miseq system. Whole-genome analysis revealed that PIMB10EC27 contains a chromosome of the ST513 group (PIMBEC27, length 5,272,177 bp) and two plasmids, pEC27-1 of the IncX3 group (length 62,470 bp) and pEC27-2 of the IncHI1 group (length 84,602 bp). It also revealed that strain PIMB10EC27 carries 15 genes that confer resistance to at least 10 antibiotic groups. Particularly, the…

Read More »

Tuesday, April 21, 2020

Complete genome sequence of an IMP-8, CTX-M-14, CTX-M-3 and QnrS1 co-producing Enterobacter asburiae isolate from a patient with wound infection.

The aim of this study was to investigate the characteristics and complete genome sequence of an IMP-8, CTX-M-14, CTX-M-3 and QnrS1 co-producing multidrug-resistant Enterobacter asburiae isolate (EN3600) from a patient with wound infection.Species identification was confirmed by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF/MS). Carbapenemase genes were identified by PCR and Sanger sequencing. The complete genome sequence of E. asburiae EN3600 was obtained using a PacBio RS II platform. Genome annotation was done by Rapid Annotation using Subsystem Technology (RAST) server. Acquired antimicrobial resistance genes (ARGs) and plasmid replicons were detected using ResFinder 2.1 and PlasmidFinder 1.3, respectively.The genome of…

Read More »

Tuesday, April 21, 2020

Genomic variation and strain-specific functional adaptation in the human gut microbiome during early life.

The human gut microbiome matures towards the adult composition during the first years of life and is implicated in early immune development. Here, we investigate the effects of microbial genomic diversity on gut microbiome development using integrated early childhood data sets collected in the DIABIMMUNE study in Finland, Estonia and Russian Karelia. We show that gut microbial diversity is associated with household location and linear growth of children. Single nucleotide polymorphism- and metagenomic assembly-based strain tracking revealed large and highly dynamic microbial pangenomes, especially in the genus Bacteroides, in which we identified evidence of variability deriving from Bacteroides-targeting bacteriophages. Our…

Read More »

Tuesday, April 21, 2020

Investigating the bacterial microbiota of traditional fermented dairy products using propidium monoazide with single-molecule real-time sequencing.

Traditional fermented dairy foods have been the major components of the Mongolian diet for millennia. In this study, we used propidium monoazide (PMA; binds to DNA of nonviable cells so that only viable cells are enumerated) and single-molecule real-time sequencing (SMRT) technology to investigate the total and viable bacterial compositions of 19 traditional fermented dairy foods, including koumiss from Inner Mongolia (KIM), koumiss from Mongolia (KM), and fermented cow milk from Mongolia (CM); sample groups treated with PMA were designated PKIM, PKM, and PCM. Full-length 16S rRNA sequencing identified 195 bacterial species in 121 genera and 13 phyla in PMA-treated…

Read More »

Tuesday, April 21, 2020

Genetic and biochemical characterization of FRI-3, a novel variant of the Ambler class A carbapenemase FRI-1.

To characterize a new variant of the FRI class A carbapenemase isolated from an MDR clinical Enterobacter cloacae isolate.A carbapenem-resistant E. cloacae was isolated from a rectal swab from a patient in an ICU in Southern Germany. Various phenotypic tests confirmed production of a putative class A carbapenemase. The new bla gene variant, blaFRI-3, and its genetic environment were characterized by WGS. Biochemical characterization was performed by heterologous expression in Escherichia coli TOP10 and by purification of the enzyme with subsequent determination of its kinetic parameters.PCR and sequencing carried out for different class A carbapenemase genes confirmed the presence of…

Read More »

Tuesday, April 21, 2020

Characterization of a blaIMP-4-carrying plasmid from Enterobacter cloacae of swine origin.

To characterize an MDR blaIMP-4-harbouring plasmid from Enterobacter cloacae EC62 of swine origin in China.Plasmid pIMP-4-EC62 from E. cloacae EC62 was transferred by conjugation via filter mating into Escherichia coli J53. Plasmid DNA was extracted from an E. coli J53 transconjugant and sequenced using single-molecule real-time (SMRT) technology. MIC values for both the isolate EC62 and the transconjugant were determined using the broth microdilution and agar dilution methods. Plasmid stability in both the isolate EC62 and the transconjugant was assessed through a series of passages on antibiotic-free media.Plasmid pIMP-4-EC62 is 314351?bp in length, encodes 369 predicted proteins and harbours a…

Read More »

Tuesday, April 21, 2020

The complete genome sequence of Ethanoligenens harbinense reveals the metabolic pathway of acetate-ethanol fermentation: A novel understanding of the principles of anaerobic biotechnology.

Ethanol-type fermentation is one of three main fermentation types in the acidogenesis of anaerobic treatment systems. Non-spore-forming Ethanoligenens is as a typical genus capable of ethanol-type fermentation in mixed culture (i.e. acetate-ethanol fermentation). This genus can produce ethanol, acetate, CO2, and H2 using carbohydrates, and has application potential in anaerobic bioprocesses. Here, the complete genome sequences and methylome of Ethanoligenens harbinense strains with different autoaggregative and coaggregative abilities were obtained using the PacBio single-molecule real-time sequencing platform. The genome size of E. harbinense strains was about 2.97-3.10?Mb with 55.5% G+C content. 3020-3153 genes were annotated, most of which were methylated…

Read More »

Tuesday, April 21, 2020

Characterization of an NDM-5 carbapenemase-producing Escherichia coli ST156 isolate from a poultry farm in Zhejiang, China.

The emergence of carbapenem-resistant Enterobacteriaceae strains has posed a severe threat to public health in recent years. The mobile elements carrying the New Delhi metallo-ß-lactqtamase (NDM) gene have been regarded as the major mechanism leading to the rapid increase of carbapenem-resistant Enterobacteriaceae strains isolated from clinics and animals.We describe an NDM-5-producing Escherichia coli strain, ECCRA-119 (sequence type 156 [ST156]), isolated from a poultry farm in Zhejiang, China. ECCRA-119 is a multidrug-resistant (MDR) isolate that exhibited resistance to 27 antimicrobial compounds, including imipenem and meropenem, as detected by antimicrobial susceptibility testing (AST). The complete genome sequence of the ECCRA-119 isolate was…

Read More »

Subscribe for blog updates:

Archives