Menu
September 22, 2019  |  

Microevolution of Neisseria lactamica during nasopharyngeal colonisation induced by controlled human infection.

Neisseria lactamica is a harmless coloniser of the infant respiratory tract, and has a mutually-excluding relationship with the pathogen Neisseria meningitidis. Here we report controlled human infection with genomically-defined N. lactamica and subsequent bacterial microevolution during 26 weeks of colonisation. We find that most mutations that occur during nasopharyngeal carriage are transient indels within repetitive tracts of putative phase-variable loci associated with host-microbe interactions (pgl and lgt) and iron acquisition (fetA promotor and hpuA). Recurrent polymorphisms occurred in genes associated with energy metabolism (nuoN, rssA) and the CRISPR-associated cas1. A gene encoding a large hypothetical protein was often mutated in 27% of the subjects. In volunteers who were naturally co-colonised with meningococci, recombination altered allelic identity in N. lactamica to resemble meningococcal alleles, including loci associated with metabolism, outer membrane proteins and immune response activators. Our results suggest that phase variable genes are often mutated during carriage-associated microevolution.


September 22, 2019  |  

Analysis of structural variants in four African cichlids highlights an association with developmental and immune related genes

African Lakes Cichlids are one of the most impressive example of adaptive radiation. Independently in Lake Victoria, Tanganyika, and Malawi, several hundreds of species arose within the last 10 million to 100,000 years. Whereas most analyses in cichlids focused on nucleotide substitutions across species to investigate the genetic bases of this explosive radiation, to date, no study has investigated the contribution of structural variants (SVs) to speciation events (through a reduction of gene flow) and adaptation to different ecological niches. Here, we annotate and characterize the repertoires and evolutionary potential of different SV classes (deletion, duplication, inversion, insertions and translocations) in five cichlid species (Astatotilapia burtoni, Metriaclima zebra, Neolamprologus brichardi, Pundamilia nyererei and Oreochromis niloticus). We investigate the patterns of gain/loss evolution across the phylogeny for each SV type enabling the identification of both lineage specific events and a set of conserved SVs, common to all four species in the radiation. Both deletion and inversion events show a significant overlap with SINE elements, while inversions additionally show a limited, but significant association with DNA transposons. Genes lying inside inverted regions are enriched for genes regulating behaviour, or involved in skeletal and visual system development. Moreover, we find that duplicated genes show enrichment for textquoterightantigen processing and presentationtextquoteright (GO:0019882) and other immune related categories. Altogether, we provide the first, comprehensive overview of rearrangement evolution in East African Cichlids, and some initial insights into their possible contribution to adaptation.


July 19, 2019  |  

Biosynthesis of the novel macrolide antibiotic anthracimycin.

We report the identification of the biosynthetic gene cluster for the unusual antibiotic anthracimycin (atc) from the marine derived producer strain Streptomyces sp. T676 isolated off St. John’s Island, Singapore. The 53?253 bps atc locus includes a trans-acyltransferase (trans-AT) polyketide synthase (PKS), and heterologous expression in Streptomyces coelicolor resulted in anthracimycin production. Analysis of the atc cluster revealed that anthracimycin is likely generated by four PKS gene products AtcC-AtcF without involvement of post-PKS tailoring enzymes, and a biosynthetic pathway is proposed. The availability of the atc cluster provides a basis for investigating the biosynthesis of anthracimycin and its subsequent bioengineering to provide novel analogues with improved pharmacological properties.


July 19, 2019  |  

Accelerated cloning of a potato late blight-resistance gene using RenSeq and SMRT sequencing.

Global yields of potato and tomato crops have fallen owing to potato late blight disease, which is caused by Phytophthora infestans. Although most commercial potato varieties are susceptible to blight, many wild potato relatives show variation for resistance and are therefore a potential source of Resistance to P. infestans (Rpi) genes. Resistance breeding has exploited Rpi genes from closely related tuber-bearing potato relatives, but is laborious and slow. Here we report that the wild, diploid non-tuber-bearing Solanum americanum harbors multiple Rpi genes. We combine resistance (R) gene sequence capture (RenSeq) with single-molecule real-time (SMRT) sequencing (SMRT RenSeq) to clone Rpi-amr3i. This technology should enable de novo assembly of complete nucleotide-binding, leucine-rich repeat receptor (NLR) genes, their regulatory elements and complex multi-NLR loci from uncharacterized germplasm. SMRT RenSeq can be applied to rapidly clone multiple R genes for engineering pathogen-resistant crops.


July 19, 2019  |  

Targeted capture and sequencing of gene-sized DNA molecules.

Targeted capture provides an efficient and sensitive means for sequencing specific genomic regions in a high-throughput manner. To date, this method has mostly been used to capture exons from the genome (the exome) using short insert libraries and short-read sequencing technology, enabling the identification of genetic variants or new members of large gene families. Sequencing larger molecules results in the capture of whole genes, including intronic and intergenic sequences that are typically more polymorphic and allow the resolution of the gene structure of homologous genes, which are often clustered together on the chromosome. Here, we describe an improved method for the capture and single-molecule sequencing of DNA molecules as large as 7 kb by means of size selection and optimized PCR conditions. Our approach can be used to capture, sequence, and distinguish between similar members of the NB-LRR gene family-key genes in plant immune systems.


July 19, 2019  |  

SMRT Gate: A method for validation of synthetic constructs on Pacific Biosciences sequencing platforms.

Current DNA assembly methods are prone to sequence errors, requiring rigorous quality control (QC) to identify incorrect assemblies or synthesized constructs. Such errors can lead to misinterpretation of phenotypes. Because of this intrinsic problem, routine QC analysis is generally performed on three or more clones using a combination of restriction endonuclease assays, colony PCR, and Sanger sequencing. However, as new automation methods emerge that enable high-throughput assembly, QC using these techniques has become a major bottleneck. Here, we describe a quick and affordable methodology for the QC of synthetic constructs. Our method involves a one-pot digestion-ligation DNA assembly reaction, based on the Golden Gate assembly methodology, that is coupled with Pacific Biosciences’ Single Molecule, Real-Time (PacBio SMRT) sequencing technology.


July 19, 2019  |  

Evolutionary restoration of fertility in an interspecies hybrid yeast, by whole-genome duplication after a failed mating-type switch.

Many interspecies hybrids have been discovered in yeasts, but most of these hybrids are asexual and can replicate only mitotically. Whole-genome duplication has been proposed as a mechanism by which interspecies hybrids can regain fertility, restoring their ability to perform meiosis and sporulate. Here, we show that this process occurred naturally during the evolution of Zygosaccharomyces parabailii, an interspecies hybrid that was formed by mating between 2 parents that differed by 7% in genome sequence and by many interchromosomal rearrangements. Surprisingly, Z. parabailii has a full sexual cycle and is genetically haploid. It goes through mating-type switching and autodiploidization, followed by immediate sporulation. We identified the key evolutionary event that enabled Z. parabailii to regain fertility, which was breakage of 1 of the 2 homeologous copies of the mating-type (MAT) locus in the hybrid, resulting in a chromosomal rearrangement and irreparable damage to 1 MAT locus. This rearrangement was caused by HO endonuclease, which normally functions in mating-type switching. With 1 copy of MAT inactivated, the interspecies hybrid now behaves as a haploid. Our results provide the first demonstration that MAT locus damage is a naturally occurring evolutionary mechanism for whole-genome duplication and restoration of fertility to interspecies hybrids. The events that occurred in Z. parabailii strongly resemble those postulated to have caused ancient whole-genome duplication in an ancestor of Saccharomyces cerevisiae.


July 19, 2019  |  

Neofunctionalization of duplicated P450 genes drives the evolution of insecticide resistance in the brown planthopper.

Gene duplication is a major source of genetic variation that has been shown to underpin the evolution of a wide range of adaptive traits [1, 2]. For example, duplication or amplification of genes encoding detoxification enzymes has been shown to play an important role in the evolution of insecticide resistance [3-5]. In this context, gene duplication performs an adaptive function as a result of its effects on gene dosage and not as a source of functional novelty [3, 6-8]. Here, we show that duplication and neofunctionalization of a cytochrome P450, CYP6ER1, led to the evolution of insecticide resistance in the brown planthopper. Considerable genetic variation was observed in the coding sequence of CYP6ER1 in populations of brown planthopper collected from across Asia, but just two sequence variants are highly overexpressed in resistant strains and metabolize imidacloprid. Both variants are characterized by profound amino-acid alterations in substrate recognition sites, and the introduction of these mutations into a susceptible P450 sequence is sufficient to confer resistance. CYP6ER1 is duplicated in resistant strains with individuals carrying paralogs with and without the gain-of-function mutations. Despite numerical parity in the genome, the susceptible and mutant copies exhibit marked asymmetry in their expression with the resistant paralogs overexpressed. In the primary resistance-conferring CYP6ER1 variant, this results from an extended region of novel sequence upstream of the gene that provides enhanced expression. Our findings illustrate the versatility of gene duplication in providing opportunities for functional and regulatory innovation during the evolution of an adaptive trait. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.


July 19, 2019  |  

De novo repeat interruptions are associated with reduced somatic instability and mild or absent clinical features in myotonic dystrophy type 1.

Myotonic dystrophy type 1 (DM1) is a multisystem disorder, caused by expansion of a CTG trinucleotide repeat in the 3′-untranslated region of the DMPK gene. The repeat expansion is somatically unstable and tends to increase in length with time, contributing to disease progression. In some individuals, the repeat array is interrupted by variant repeats such as CCG and CGG, stabilising the expansion and often leading to milder symptoms. We have characterised three families, each including one person with variant repeats that had arisen de novo on paternal transmission of the repeat expansion. Two individuals were identified for screening due to an unusual result in the laboratory diagnostic test, and the third due to exceptionally mild symptoms. The presence of variant repeats in all three expanded alleles was confirmed by restriction digestion of small pool PCR products, and allele structures were determined by PacBio sequencing. Each was different, but all contained CCG repeats close to the 3′-end of the repeat expansion. All other family members had inherited pure CTG repeats. The variant repeat-containing alleles were more stable in the blood than pure alleles of similar length, which may in part account for the mild symptoms observed in all three individuals. This emphasises the importance of somatic instability as a disease mechanism in DM1. Further, since patients with variant repeats may have unusually mild symptoms, identification of these individuals has important implications for genetic counselling and for patient stratification in DM1 clinical trials.


July 19, 2019  |  

Population genomics shows no distinction between pathogenic Candida krusei and environmental Pichia kudriavzevii: One species, four names.

We investigated genomic diversity of a yeast species that is both an opportunistic pathogen and an important industrial yeast. Under the name Candida krusei, it is responsible for about 2% of yeast infections caused by Candida species in humans. Bloodstream infections with C. krusei are problematic because most isolates are fluconazole-resistant. Under the names Pichia kudriavzevii, Issatchenkia orientalis and Candida glycerinogenes, the same yeast, including genetically modified strains, is used for industrial-scale production of glycerol and succinate. It is also used to make some fermented foods. Here, we sequenced the type strains of C. krusei (CBS573T) and P. kudriavzevii (CBS5147T), as well as 30 other clinical and environmental isolates. Our results show conclusively that they are the same species, with collinear genomes 99.6% identical in DNA sequence. Phylogenetic analysis of SNPs does not segregate clinical and environmental isolates into separate clades, suggesting that C. krusei infections are frequently acquired from the environment. Reduced resistance of strains to fluconazole correlates with the presence of one gene instead of two at the ABC11-ABC1 tandem locus. Most isolates are diploid, but one-quarter are triploid. Loss of heterozygosity is common, including at the mating-type locus. Our PacBio/Illumina assembly of the 10.8 Mb CBS573T genome is resolved into 5 complete chromosomes, and was annotated using RNAseq support. Each of the 5 centromeres is a 35 kb gene desert containing a large inverted repeat. This species is a member of the genus Pichia and family Pichiaceae (the methylotrophic yeasts clade), and so is only distantly related to other pathogenic Candida species.


July 7, 2019  |  

Sequencing of plasmids pAMBL1 and pAMBL2 from Pseudomonas aeruginosa reveals a blaVIM-1 amplification causing high-level carbapenem resistance.

Carbapenemases are a major concern for the treatment of infectious diseases caused by Gram-negative bacteria. Although plasmids are responsible for the spread of resistance genes among these pathogens, there is limited information on the nature of the mobile genetic elements carrying carbapenemases in Pseudomonas aeruginosa.We combined data from two different next-generation sequencing platforms, Illumina HiSeq2000 and PacBio RSII, to obtain the complete nucleotide sequences of two blaVIM-1-carrying plasmids (pAMBL1 and pAMBL2) isolated from P. aeruginosa clinical isolates.Plasmid pAMBL1 has 26?440 bp and carries a RepA_C family replication protein. pAMBL1 is similar to plasmids pNOR-2000 and pKLC102 from P. aeruginosa and pAX22 from Achromobacter xylosoxidans, which also carry VIM-type carbapenemases. pAMBL2 is a 24?133 bp plasmid with a replication protein that belongs to the Rep_3 family. It shows a high degree of homology with a fragment of the blaVIM-1-bearing plasmid pPC9 from Pseudomonas putida. Plasmid pAMBL2 carries three copies of the blaVIM-1 cassette in an In70 class 1 integron conferring, unlike pAMBL1, high-level resistance to carbapenems.We present two new plasmids coding for VIM-1 carbapenemase from P. aeruginosa and report that the presence of three copies of blaVIM-1 in pAMBL2 produces high-level resistance to carbapenems.© The Author 2015. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.


July 7, 2019  |  

StatsDB: platform-agnostic storage and understanding of next generation sequencing run metrics.

Modern sequencing platforms generate enormous quantities of data in ever-decreasing amounts of time. Additionally, techniques such as multiplex sequencing allow one run to contain hundreds of different samples. With such data comes a significant challenge to understand its quality and to understand how the quality and yield are changing across instruments and over time. As well as the desire to understand historical data, sequencing centres often have a duty to provide clear summaries of individual run performance to collaborators or customers. We present StatsDB, an open-source software package for storage and analysis of next generation sequencing run metrics. The system has been designed for incorporation into a primary analysis pipeline, either at the programmatic level or via integration into existing user interfaces. Statistics are stored in an SQL database and APIs provide the ability to store and access the data while abstracting the underlying database design. This abstraction allows simpler, wider querying across multiple fields than is possible by the manual steps and calculation required to dissect individual reports, e.g. “provide metrics about nucleotide bias in libraries using adaptor barcode X, across all runs on sequencer A, within the last month”. The software is supplied with modules for storage of statistics from FastQC, a commonly used tool for analysis of sequence reads, but the open nature of the database schema means it can be easily adapted to other tools. Currently at The Genome Analysis Centre (TGAC), reports are accessed through our LIMS system or through a standalone GUI tool, but the API and supplied examples make it easy to develop custom reports and to interface with other packages.


July 7, 2019  |  

Evolutionary genomics of the cold-adapted diatom Fragilariopsis cylindrus.

The Southern Ocean houses a diverse and productive community of organisms. Unicellular eukaryotic diatoms are the main primary producers in this environment, where photosynthesis is limited by low concentrations of dissolved iron and large seasonal fluctuations in light, temperature and the extent of sea ice. How diatoms have adapted to this extreme environment is largely unknown. Here we present insights into the genome evolution of a cold-adapted diatom from the Southern Ocean, Fragilariopsis cylindrus, based on a comparison with temperate diatoms. We find that approximately 24.7 per cent of the diploid F. cylindrus genome consists of genetic loci with alleles that are highly divergent (15.1 megabases of the total genome size of 61.1 megabases). These divergent alleles were differentially expressed across environmental conditions, including darkness, low iron, freezing, elevated temperature and increased CO2. Alleles with the largest ratio of non-synonymous to synonymous nucleotide substitutions also show the most pronounced condition-dependent expression, suggesting a correlation between diversifying selection and allelic differentiation. Divergent alleles may be involved in adaptation to environmental fluctuations in the Southern Ocean.


July 7, 2019  |  

Improving and correcting the contiguity of long-read genome assemblies of three plant species using optical mapping and chromosome conformation capture data.

Long-read sequencing can overcome the weaknesses of short reads in the assembly of eukaryotic genomes, however, at present additional scaffolding is needed to achieve chromosome-level assemblies. We generated PacBio long-read data of the genomes of three relatives of the model plant Arabidopsis thaliana and assembled all three genomes into only a few hundred contigs. To improve the contiguities of these assemblies, we generated BioNano Genomics optical mapping and Dovetail Genomics chromosome conformation capture data for genome scaffolding. Despite their technical differences, optical mapping and chromosome conformation capture performed similarly and doubled N50 values. After improving both integration methods, assembly contiguity reached chromosome-arm-levels. We rigorously assessed the quality of contigs and scaffolds using Illumina mate-pair libraries and genetic map information. This showed that PacBio assemblies have high sequence accuracy but can contain several misassemblies, which join unlinked regions of the genome. Most, but not all of these mis-joints were removed during the integration of the optical mapping and chromosome conformation capture data. Even though none of the centromeres was fully assembled, the scaffolds revealed large parts of some centromeric regions, even including some of the heterochromatic regions, which are not present in gold standard reference sequences. Published by Cold Spring Harbor Laboratory Press.


July 7, 2019  |  

An L-threonine transaldolase is required for L-threo-ß-hydroxy-a-amino acid assembly during obafluorin biosynthesis.

ß-Lactone natural products occur infrequently in nature but possess a variety of potent and valuable biological activities. They are commonly derived from ß-hydroxy-a-amino acids, which are themselves valuable chiral building blocks for chemical synthesis and precursors to numerous important medicines. However, despite a number of excellent synthetic methods for their asymmetric synthesis, few effective enzymatic tools exist for their preparation. Here we report cloning of the biosynthetic gene cluster for the ß-lactone antibiotic obafluorin and delineate its biosynthetic pathway. We identify a nonribosomal peptide synthetase with an unusual domain architecture and an L-threonine:4-nitrophenylacetaldehyde transaldolase responsible for (2S,3R)-2-amino-3-hydroxy-4-(4-nitrophenyl)butanoate biosynthesis. Phylogenetic analysis sheds light on the evolutionary origin of this rare enzyme family and identifies further gene clusters encoding L-threonine transaldolases. We also present preliminary data suggesting that L-threonine transaldolases might be useful for the preparation of L-threo-ß-hydroxy-a-amino acids.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.