Menu
September 22, 2019  |  

Using experimental evolution to identify druggable targets that could inhibit the evolution of antimicrobial resistance.

With multi-drug and pan-drug-resistant bacteria becoming increasingly common in hospitals, antibiotic resistance has threatened to return us to a pre-antibiotic era that would completely undermine modern medicine. There is an urgent need to develop new antibiotics and strategies to combat resistance that are substantially different from earlier drug discovery efforts. One such strategy that would complement current and future antibiotics would be a class of co-drugs that target the evolution of resistance and thereby extend the efficacy of specific classes of antibiotics. A critical step in the development of such strategies lies in understanding the critical evolutionary trajectories responsible for resistance and which proteins or biochemical pathways within those trajectories would be good candidates for co-drug discovery. We identify the most important steps in the evolution of resistance for a specific pathogen and antibiotic combination by evolving highly polymorphic populations of pathogens to resistance in a novel bioreactor that favors biofilm development. As the populations evolve to increasing drug concentrations, we use deep sequencing to elucidate the network of genetic changes responsible for resistance and subsequent in vitro biochemistry and often structure determination to determine how the adaptive mutations produce resistance. Importantly, the identification of the molecular steps, their frequency within the populations and their chronology within the evolutionary trajectory toward resistance is critical to assessing their relative importance. In this work, we discuss findings from the evolution of the ESKAPE pathogen, Pseudomonas aeruginosa to the drug of last resort, colistin to illustrate the power of this approach.


September 22, 2019  |  

Occurrence, evolution, and functions of DNA phosphorothioate epigenetics in bacteria.

The chemical diversity of physiological DNA modifications has expanded with the identification of phosphorothioate (PT) modification in which the nonbridging oxygen in the sugar-phosphate backbone of DNA is replaced by sulfur. Together with DndFGH as cognate restriction enzymes, DNA PT modification, which is catalyzed by the DndABCDE proteins, functions as a bacterial restriction-modification (R-M) system that protects cells against invading foreign DNA. However, the occurrence of dnd systems across a large number of bacterial genomes and their functions other than R-M are poorly understood. Here, a genomic survey revealed the prevalence of bacterial dnd systems: 1,349 bacterial dnd systems were observed to occur sporadically across diverse phylogenetic groups, and nearly half of these occur in the form of a solitary dndBCDE gene cluster that lacks the dndFGH restriction counterparts. A phylogenetic analysis of 734 complete PT R-M pairs revealed the coevolution of M and R components, despite the observation that several PT R-M pairs appeared to be assembled from M and R parts acquired from distantly related organisms. Concurrent epigenomic analysis, transcriptome analysis, and metabolome characterization showed that a solitary PT modification contributed to the overall cellular redox state, the loss of which perturbed the cellular redox balance and induced Pseudomonas fluorescens to reconfigure its metabolism to fend off oxidative stress. An in vitro transcriptional assay revealed altered transcriptional efficiency in the presence of PT DNA modification, implicating its function in epigenetic regulation. These data suggest the versatility of PT in addition to its involvement in R-M protection.


September 22, 2019  |  

Epigenetic landscape influences the liver cancer genome architecture.

The accumulations of different types of genetic alterations such as nucleotide substitutions, structural rearrangements and viral genome integrations and epigenetic alterations contribute to carcinogenesis. Here, we report correlation between the occurrence of epigenetic features and genetic aberrations by whole-genome bisulfite, whole-genome shotgun, long-read, and virus capture sequencing of 373 liver cancers. Somatic substitutions and rearrangement breakpoints are enriched in tumor-specific hypo-methylated regions with inactive chromatin marks and actively transcribed highly methylated regions in the cancer genome. Individual mutation signatures depend on chromatin status, especially, signatures with a higher transcriptional strand bias occur within active chromatic areas. Hepatitis B virus (HBV) integration sites are frequently detected within inactive chromatin regions in cancer cells, as a consequence of negative selection for integrations in active chromatin regions. Ultra-high structural instability and preserved unmethylation of integrated HBV genomes are observed. We conclude that both precancerous and somatic epigenetic features contribute to the cancer genome architecture.


September 22, 2019  |  

IMSindel: An accurate intermediate-size indel detection tool incorporating de novo assembly and gapped global-local alignment with split read analysis.

Insertions and deletions (indels) have been implicated in dozens of human diseases through the radical alteration of gene function by short frameshift indels as well as long indels. However, the accurate detection of these indels from next-generation sequencing data is still challenging. This is particularly true for intermediate-size indels (=50?bp), due to the short DNA sequencing reads. Here, we developed a new method that predicts intermediate-size indels using BWA soft-clipped fragments (unmatched fragments in partially mapped reads) and unmapped reads. We report the performance comparison of our method, GATK, PINDEL and ScanIndel, using whole exome sequencing data from the same samples. False positive and false negative counts were determined through Sanger sequencing of all predicted indels across these four methods. The harmonic mean of the recall and precision, F-measure, was used to measure the performance of each method. Our method achieved the highest F-measure of 0.84 in one sample, compared to 0.56 for GATK, 0.52 for PINDEL and 0.46 for ScanIndel. Similar results were obtained in additional samples, demonstrating that our method was superior to the other methods for detecting intermediate-size indels. We believe that this methodology will contribute to the discovery of intermediate-size indels associated with human disease.


September 22, 2019  |  

SvABA: genome-wide detection of structural variants and indels by local assembly.

Structural variants (SVs), including small insertion and deletion variants (indels), are challenging to detect through standard alignment-based variant calling methods. Sequence assembly offers a powerful approach to identifying SVs, but is difficult to apply at scale genome-wide for SV detection due to its computational complexity and the difficulty of extracting SVs from assembly contigs. We describe SvABA, an efficient and accurate method for detecting SVs from short-read sequencing data using genome-wide local assembly with low memory and computing requirements. We evaluated SvABA’s performance on the NA12878 human genome and in simulated and real cancer genomes. SvABA demonstrates superior sensitivity and specificity across a large spectrum of SVs and substantially improves detection performance for variants in the 20-300 bp range, compared with existing methods. SvABA also identifies complex somatic rearrangements with chains of short (<1000 bp) templated-sequence insertions copied from distant genomic regions. We applied SvABA to 344 cancer genomes from 11 cancer types and found that short templated-sequence insertions occur in ~4% of all somatic rearrangements. Finally, we demonstrate that SvABA can identify sites of viral integration and cancer driver alterations containing medium-sized (50-300 bp) SVs.© 2018 Wala et al.; Published by Cold Spring Harbor Laboratory Press.


September 22, 2019  |  

Biosynthesis of the 15-membered ring depsipeptide neoantimycin.

Antimycins are a family of natural products possessing outstanding biological activities and unique structures, which have intrigued chemists for over a half century. Of particular interest are the ring-expanded antimycins that show promising anticancer potential and whose biosynthesis remains uncharacterized. Specifically, neoantimycin and its analogs have been shown to be effective regulators of the oncogenic proteins GRP78/BiP and K-Ras. The neoantimycin structural skeleton is built on a 15-membered tetralactone ring containing one methyl, one hydroxy, one benzyl, and three alkyl moieties, as well as an amide linkage to a conserved 3-formamidosalicylic acid moiety. Although the biosynthetic gene cluster for neoantimycins was recently identified, the enzymatic logic that governs the synthesis of neoantimycins has not yet been revealed. In this work, the neoantimycin gene cluster is identified, and an updated sequence and annotation is provided delineating a nonribosomal peptide synthetase/polyketide synthase (NRPS/PKS) hybrid scaffold. Using cosmid expression and CRISPR/Cas-based genome editing, several heterologous expression strains for neoantimycin production are constructed in two separate Streptomyces species. A combination of in vivo and in vitro analysis is further used to completely characterize the biosynthesis of neoantimycins including the megasynthases and trans-acting domains. This work establishes a set of highly tractable hosts for producing and engineering neoantimycins and their C11 oxidized analogs, paving the way for neoantimycin-based drug discovery and development.


September 22, 2019  |  

Genome mining of the marine actinomycete Streptomyces sp. DUT11 and discovery of tunicamycins as anti-complement agents.

Marine actinobacteria are potential producers of various secondary metabolites with diverse bioactivities. Among various bioactive compounds, anti-complement agents have received great interest for drug discovery to treat numerous diseases caused by inappropriate activation of the human complement system. However, marine streptomycetes producing anti-complement agents are still poorly explored. In this study, a marine-derived strain Streptomyces sp. DUT11 showing superior anti-complement activity was focused, and its genome sequence was analyzed. Gene clusters showing high similarities to that of tunicamycin and nonactin were identified, and their corresponding metabolites were also detected. Subsequently, tunicamycin I, V, and VII were isolated from Streptomyces sp. DUT11. Anti-complement assay showed that tunicamycin I, V, VII inhibited complement activation through the classic pathway, whereas no anti-complement activity of nonactin was detected. This is the first time that tunicamycins are reported to have such activity. In addition, genome analysis indicates that Streptomyces sp. DUT11 has the potential to produce novel lassopeptides and lantibiotics. These results suggest that marine Streptomyces are rich sources of anti-complement agents for drug discovery.


September 22, 2019  |  

Genome sequencing of Streptomyces atratus SCSIOZH16 and activation production of nocardamine via metabolic engineering.

The Actinomycetes are metabolically flexible microorganisms capable of producing a wide range of interesting compounds, including but by no means limited to, siderophores which have high affinity for ferric iron. In this study, we report the complete genome sequence of marine-derived Streptomyces atratus ZH16 and the activation of an embedded siderophore gene cluster via the application of metabolic engineering methods. The S. atratus ZH16 genome reveals that this strain has the potential to produce 26 categories of natural products (NPs) barring the ilamycins. Our activation studies revealed S. atratus SCSIO ZH16 to be a promising source of the production of nocardamine-type (desferrioxamine) compounds which are important in treating acute iron intoxication and performing ecological remediation. We conclude that metabolic engineering provides a highly effective strategy by which to discover drug-like compounds and new NPs in the genomic era.


September 22, 2019  |  

Computational Modeling of Multidrug-Resistant Bacteria

Understanding how complex phenotypes arise from individual molecules and their interactions is a primary challenge in biology, and computational approaches have been increasingly employed to tackle this task. In this chapter, we describe current efforts by FIOCRUZ and partners to develop integrated computational models of multidrug-resistant bacteria. The bacterium chosen as the main focus of this effort is Pseudomonas aeruginosa, an opportunistic pathogen associated with a broad spectrum of infections in humans. Nowadays, P. aeruginosa is one of the main problems of healthcare-associated infections (HAI) in the world, because of its great capacity of survival in hospital environments and its intrinsic resistance to many antibiotics. Our overall research objective is to use integrated computational models to accurately predict a wide range of observable cellular behaviors of multidrug-resistant P. aeruginosa CCBH4851, which is a strain belonging to the clone ST277, endemic in Brazil. In this chapter, after a brief introduction to P. aeruginosa biology, we discuss the construction of metabolic and gene regulatory networks of P. aeruginosa CCBH 4851 from its genome. We also illustrate how these networks can be integrated into a single model, and we discuss methods for identifying potential therapeutic targets through integrated models.


September 22, 2019  |  

Co-culture of soil biofilm isolates enables the discovery of novel antibiotics

Bacterial natural products (NPs) are considered to be a promising source of drug discovery. However, the biosynthesis gene clusters (BGCs) of NP are not often expressed, making it difficult to identify them. Recently, the study of biofilm community showed bacteria may gain competitive advantages by the secretion of antibiotics, implying a possible way to screen antibiotic by evaluating the social behavior of bacteria. In this study, we have described an efficient workflow for novel antibiotic discovery by employing the bacterial social interaction strategy with biofilm cultivation, co-culture, transcriptomic and genomic methods. We showed that a biofilm dominant species, i.e. Pseudomonas sp. G7, which was isolated from cultivated soil biofilm community, was highly competitive in four-species biofilm communities, as the synergistic combinations preferred to exclude this strain while the antagonistic combinations did not. Through the analysis of transcriptomic changes in four-species co-culture and the complete genome of Pseudomonas sp. G7, we finally discovered two novel non-ribosomal polypeptide synthetic (NRPS) BGCs, whose products were predicted to have seven and six amino acid components, respectively. Furthermore, we provide evidence showing that only when Pseudomonas sp. G7 was co-cultivated with at least two or three other bacterial species can these BGC genes be induced, suggesting that the co-culture of the soil biofilm isolates is critical to the discovery of novel antibiotics. As a conclusion, we set a model of applying microbial interaction to the discovery of new antibiotics.


September 22, 2019  |  

Stendomycin and pantomycin are identical natural products: Preparation of a functionalized bioactive analogue.

The natural products pantomycin and stendomycin were both reported as antimicrobial agents. We demonstrate by gene cluster analysis, LC-MS analysis, and isolation that these polypeptides are identical, and we identify previously unknown congeners. We show that stendomycin can be chemically modified at its electrophilic dehydrobutyrine moiety yielding the first bioactive analogue of this natural product which can undergo additional functionalization. This compound may be a valuable starting point for molecular probe development, and we invite its distribution to the scientific community.


September 22, 2019  |  

Heterogeneous and flexible transmission of mcr-1 in hospital-associated Escherichia coli.

The recent emergence of a transferable colistin resistance mechanism, MCR-1, has gained global attention because of its threat to clinical treatment of infections caused by multidrug-resistant Gram-negative bacteria. However, the possible transmission route of mcr-1 among Enterobacteriaceae species in clinical settings is largely unknown. Here, we present a comprehensive genomic analysis of Escherichia coli isolates collected in a hospital in Hangzhou, China. We found that mcr-1-carrying isolates from clinical infections and feces of inpatients and healthy volunteers were genetically diverse and were not closely related phylogenetically, suggesting that clonal expansion is not involved in the spread of mcr-1 The mcr-1 gene was found on either chromosomes or plasmids, but in most of the E. coli isolates, mcr-1 was carried on plasmids. The genetic context of the plasmids showed considerable diversity as evidenced by the different functional insertion sequence (IS) elements, toxin-antitoxin (TA) systems, heavy metal resistance determinants, and Rep proteins of broad-host-range plasmids. Additionally, the genomic analysis revealed nosocomial transmission of mcr-1 and the coexistence of mcr-1 with other genes encoding ß-lactamases and fluoroquinolone resistance in the E. coli isolates. These findings indicate that mcr-1 is heterogeneously disseminated in both commensal and pathogenic strains of E. coli, suggest the high flexibility of this gene in its association with diverse genetic backgrounds of the hosts, and provide new insights into the genome epidemiology of mcr-1 among hospital-associated E. coli strains. IMPORTANCE Colistin represents one of the very few available drugs for treating infections caused by extensively multidrug-resistant Gram-negative bacteria. The recently emergent mcr-1 colistin resistance gene threatens the clinical utility of colistin and has gained global attention. How mcr-1 spreads in hospital settings remains unknown and was investigated by whole-genome sequencing of mcr-1-carrying Escherichia coli in this study. The findings revealed extraordinary flexibility of mcr-1 in its spread among genetically diverse E. coli hosts and plasmids, nosocomial transmission of mcr-1-carrying E. coli, and the continuous emergence of novel Inc types of plasmids carrying mcr-1 and new mcr-1 variants. Additionally, mcr-1 was found to be frequently associated with other genes encoding ß-lactams and fluoroquinolone resistance. These findings provide important information on the transmission and epidemiology of mcr-1 and are of significant public health importance as the information is expected to facilitate the control of this significant antibiotic resistance threat. Copyright © 2018 Shen et al.


September 22, 2019  |  

Integration of genomic data with NMR analysis enables assignment of the full stereostructure of neaumycin B, a potent inhibitor of glioblastoma from a marine-derived Micromonospora.

The microbial metabolites known as the macrolides are some of the most successful natural products used to treat infectious and immune diseases. Describing the structures of these complex metabolites, however, is often extremely difficult due to the presence of multiple stereogenic centers inherent in this class of polyketide-derived metabolites. With the availability of genome sequence data and a better understanding of the molecular genetics of natural product biosynthesis, it is now possible to use bioinformatic approaches in tandem with spectroscopic tools to assign the full stereostructures of these complex metabolites. In our quest to discover and develop new agents for the treatment of cancer, we observed the production of a highly cytotoxic macrolide, neaumycin B, by a marine-derived actinomycete bacterium of the genus Micromonospora. Neaumycin B is a complex polycyclic macrolide possessing 19 asymmetric centers, usually requiring selective degradation, crystallization, derivatization, X-ray diffraction analysis, synthesis, or other time-consuming approaches to assign the complete stereostructure. As an alternative approach, we sequenced the genome of the producing strain and identified the neaumycin gene cluster ( neu). By integrating the known stereospecificities of biosynthetic enzymes with comprehensive NMR analysis, the full stereostructure of neaumycin B was confidently assigned. This approach exemplifies how mining gene cluster information while integrating NMR-based structure data can achieve rapid, efficient, and accurate stereostructural assignments for complex macrolides.


September 22, 2019  |  

Genome annotation and comparative genomic analysis of Bacillus subtilis MJ01, a new bio-degradation strain isolated from oil-contaminated soil.

One of the main challenges in elimination of oil contamination from polluted environments is improvement of biodegradation by highly efficient microorganisms. Bacillus subtilis MJ01 has been evaluated as a new resource for producing biosurfactant compounds. This bacterium, which produces surfactin, is able to enhance bio-accessibility to oil hydrocarbons in contaminated soils. The genome of B. subtilis MJ01 was sequenced and assembled by PacBio RS sequencing technology. One big contig with a length of 4,108,293 bp without any gap was assembled. Genome annotation and prediction of gene showed that MJ01 genome is very similar to B. subtilis spizizenii TU-B-10 (95% similarity). The comparison and analysis of orthologous genes carried out between B. subtilis MJ01, reference strain B. subtilis subsp. subtilis str. 168, and close relative spizizenii TU-B-10 by microscope platform and various bioinformatics tools. More than 88% of 4269 predicted coding sequences in MJ01 had at least one similar sequence in genome of reference strain and spizizenii TU-B-10. Despite this high similarity, some differences were detected among encoding sequences of non-ribosome protein and bacteriocins in MJ01 and spizizenii TU-B-10. MJ01 has unique nucleotide sequences and a novel predicted lasso-peptide bacteriocin; it also has not any similar nucleotide sequence in non-redundant nucleotide data base.


September 22, 2019  |  

Amycomicin is a potent and specific antibiotic discovered with a targeted interaction screen.

The rapid emergence of antibiotic-resistant pathogenic bacteria has accelerated the search for new antibiotics. Many clinically used antibacterials were discovered through culturing a single microbial species under nutrient-rich conditions, but in the environment, bacteria constantly encounter poor nutrient conditions and interact with neighboring microbial species. In an effort to recapitulate this environment, we generated a nine-strain actinomycete community and used 16S rDNA sequencing to deconvolute the stochastic production of antimicrobial activity that was not observed from any of the axenic cultures. We subsequently simplified the community to just two strains and identified Amycolatopsis sp. AA4 as the producing strain and Streptomyces coelicolor M145 as an inducing strain. Bioassay-guided isolation identified amycomicin (AMY), a highly modified fatty acid containing an epoxide isonitrile warhead as a potent and specific inhibitor of Staphylococcus aureus Amycomicin targets an essential enzyme (FabH) in fatty acid biosynthesis and reduces S. aureus infection in a mouse skin-infection model. The discovery of AMY demonstrates the utility of screening complex communities against specific targets to discover small-molecule antibiotics.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.