X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Tuesday, April 21, 2020

Virus-host coexistence in phytoplankton through the genomic lens

Phytoplankton-virus interactions are major determinants of geochemical cycles in the oceans. Viruses are responsible for the redirection of carbon and nutrients away from larger organisms back towards microorganisms via the lysis of microalgae in a process coined the “viral shunt”. Virus-host interactions are generally expected to follow “boom and bust” dynamics, whereby a numerically dominant strain is lysed and replaced by a virus resistant strain. Here, we isolated a microalga and its infective nucleo-cytoplasmic large DNA virus (NCLDV) concomitantly from the environment in the surface NW Mediterranean Sea, Ostreococcus mediterraneus, and show continuous growth in culture of both the microalga…

Read More »

Tuesday, April 21, 2020

Medusavirus, a Novel Large DNA Virus Discovered from Hot Spring Water.

Recent discoveries of new large DNA viruses reveal high diversity in their morphologies, genetic repertoires, and replication strategies. Here, we report the novel features of medusavirus, a large DNA virus newly isolated from hot spring water in Japan. Medusavirus, with a diameter of 260?nm, shows a T=277 icosahedral capsid with unique spherical-headed spikes on its surface. It has a 381-kb genome encoding 461 putative proteins, 86 of which have their closest homologs in Acanthamoeba, whereas 279 (61%) are orphan genes. The virus lacks the genes encoding DNA topoisomerase II and RNA polymerase, showing that DNA replication takes place in the…

Read More »

Tuesday, April 21, 2020

Crustacean Genome Exploration Reveals the Evolutionary Origin of White Spot Syndrome Virus.

White spot syndrome virus (WSSV) is a crustacean-infecting, double-stranded DNA virus and is the most serious viral pathogen in the global shrimp industry. WSSV is the sole recognized member of the family Nimaviridae, and the lack of genomic data on other nimaviruses has obscured the evolutionary history of WSSV. Here, we investigated the evolutionary history of WSSV by characterizing WSSV relatives hidden in host genomic data. We surveyed 14 host crustacean genomes and identified five novel nimaviral genomes. Comparative genomic analysis of Nimaviridae identified 28 “core genes” that are ubiquitously conserved in Nimaviridae; unexpected conservation of 13 uncharacterized proteins highlighted…

Read More »

Tuesday, April 21, 2020

Gammaherpesvirus Readthrough Transcription Generates a Long Non-Coding RNA That Is Regulated by Antisense miRNAs and Correlates with Enhanced Lytic Replication In Vivo.

Gammaherpesviruses, including the human pathogens Epstein?Barr virus (EBV) and Kaposi’s sarcoma-associated herpesvirus (KSHV) are oncogenic viruses that establish lifelong infections in hosts and are associated with the development of lymphoproliferative diseases and lymphomas. Recent studies have shown that the majority of the mammalian genome is transcribed and gives rise to numerous long non-coding RNAs (lncRNAs). Likewise, the large double-stranded DNA virus genomes of herpesviruses undergo pervasive transcription, including the expression of many as yet uncharacterized lncRNAs. Murine gammaperherpesvirus 68 (MHV68, MuHV-4, ?HV68) is a natural pathogen of rodents, and is genetically and pathogenically related to EBV and KSHV, providing a…

Read More »

Tuesday, April 21, 2020

Endogenous pararetrovirus sequences are widely present in Citrinae genomes.

Endogenous pararetroviruses (EPRVs) are characterized in several plant genomes and their biological effects have been reported. In this study, hundreds of EPRV segments were identified in six Citrinae genomes. A total of 1034 EPRV segments were identified in the genomes of sweet orange, 2036 in pummelo, 598 in clementine mandarin, 752 in Ichang papeda, 2060 in citron and 245 in atalantia. Genomic analysis indicated that EPRV segments tend to cluster as hot spots in the genomes, particularly on chromosome 2 and 5. Large numbers of simple repeats and transposable elements were identified in the 2-kb flanking regions of the EPRV…

Read More »

Tuesday, April 21, 2020

Analyses of four new Caulobacter Phicbkviruses indicate independent lineages.

Bacteriophages with genomes larger than 200 kbp are considered giant phages, and the giant Phicbkviruses are the most frequently isolated Caulobacter crescentus phages. In this study, we compare six bacteriophage genomes that differ from the genomes of the majority of Phicbkviruses. Four of these genomes are much larger than those of the rest of the Phicbkviruses, with genome sizes that are more than 250 kbp. A comparison of 16 Phicbkvirus genomes identified a ‘core genome’ of 69 genes that is present in all of these Phicbkvirus genomes, as well as shared accessory genes and genes that are unique for each…

Read More »

Tuesday, April 21, 2020

Linking CRISPR-Cas9 interference in cassava to the evolution of editing-resistant geminiviruses.

Geminiviruses cause damaging diseases in several important crop species. However, limited progress has been made in developing crop varieties resistant to these highly diverse DNA viruses. Recently, the bacterial CRISPR/Cas9 system has been transferred to plants to target and confer immunity to geminiviruses. In this study, we use CRISPR-Cas9 interference in the staple food crop cassava with the aim of engineering resistance to African cassava mosaic virus, a member of a widespread and important family (Geminiviridae) of plant-pathogenic DNA viruses.Our results show that the CRISPR system fails to confer effective resistance to the virus during glasshouse inoculations. Further, we find…

Read More »

Subscribe for blog updates:

Archives

Press Release

Pacific Biosciences Announces New Chief Financial Officer

Monday, September 14, 2020

Stay
Current

Visit our blog »