Menu
June 1, 2021  |  

Detecting pathogenic structural variants with low-coverage PacBio sequencing.

Though a role for structural variants in human disease has long been recognized, it has remained difficult to identify intermediate-sized variants (50 bp to 5 kb), which are too small to detect with array comparative genomic hybridization, but too large to reliably discover with short-read DNA sequencing. Recent studies have demonstrated that PacBio Single Molecule, Real-Time (SMRT) sequencing fills this technology gap. SMRT sequencing detects tens of thousands of structural variants in the human genome, approximately five times the sensitivity of short-read DNA sequencing.


June 1, 2021  |  

Applying Sequel to Genomic Datasets

De novo assembly is a large part of JGI’s analysis portfolio. Repetitive DNA sequences are abundant in a wide range of organisms we sequence and pose a significant technical challenge for assembly. We are interested in long read technologies capable of spanning genomic repeats to produce better assemblies. We currently have three RS II and two Sequel PacBio machines. RS II machines are primarily used for fungal and microbial genome assembly as well as synthetic biology validation. Between microbes and fungi we produce hundreds of PacBio libraries a year and for throughput reasons the vast majority of these are >10 kb AMPure libraries. Throughput for RS II is about 1 Gb per SMRT Cell. This is ideal for microbial sized genomes but can be costly and labor intensive for larger projects which require multiple cells. JGI was an early access site for Sequel and began testing with real samples in January 2016. During that time we’ve had the opportunity to sequence microbes, fungi, metagenomes, and plants. Here we present our experience over the last 18 months using the Sequel platform and provide comparisons with RS II results.


June 1, 2021  |  

Detecting pathogenic structural variants with long-read PacBio SMRT Sequencing

Most of the base pairs that differ between two human genomes are in intermediate-sized structural variants (50 bp to 5 kb), which are too small to detect with array comparative genomic hybridization or optical mapping but too large to reliably discover with short-read DNA sequencing. Long-read sequencing with PacBio Single Molecule, Real-Time (SMRT) Sequencing platforms fills this technology gap. PacBio SMRT Sequencing detects tens of thousands of structural variants in a human genome with approximately five times the sensitivity of short-read DNA sequencing. Effective application of PacBio SMRT Sequencing to detect structural variants requires quality bioinformatics tools that account for the characteristics of PacBio reads. To provide such a solution, we developed pbsv, a structural variant caller for PacBio reads that works as a chain of simple stages: 1) map reads to the reference genome, 2) identify reads with signatures of structural variation, 3) cluster nearby reads with similar signatures, 4) summarize each cluster into a consensus variant, and 5) filter for variants with sufficient read support. To evaluate the baseline performance of pbsv, we generated high coverage of a diploid human genome on the PacBio Sequel System, established a target set of structural variants, and then titrated to lower coverage levels. The false discovery rate for pbsv is low at all coverage levels. Sensitivity is high even at modest coverage: above 85% at 10-fold coverage and above 95% at 20-fold coverage. To assess the potential for PacBio SMRT Sequencing to identify pathogenic variants, we evaluated an individual with clinical symptoms suggestive of Carney complex for whom short-read whole genome sequencing was uninformative. The individual was sequenced to 9-fold coverage on the PacBio Sequel System, and structural variants were called with pbsv. Filtering for rare, genic structural variants left six candidates, including a heterozygous 2,184 bp deletion that removes the first coding exon of PRKAR1A. Null mutations in PRKAR1Acause autosomal dominant Carney complex, type 1. The variant was determined to be de novo, and it was classified as likely pathogenic based on ACMG standards and guidelines for variant interpretation. These case studies demonstrate the ability of pbsv to detect structural variants in low-coverage PacBio SMRT Sequencing and suggest the importance of considering structural variants in any study of human genetic variation.


June 1, 2021  |  

Best practices for diploid assembly of complex genomes using PacBio: A case study of Cascade Hops

A high quality reference genome is an essential resource for plant and animal breeding and functional and evolutionary studies. The common hop (Humulus lupulus, Cannabaceae) is an economically important crop plant used to flavor and preserve beer. Its genome is large (flow cytometrybased estimates of diploid length >5.4Gb1), highly repetitive, and individual plants display high levels of heterozygosity, which make assembly of an accurate and contiguous reference genome challenging with conventional short-read methods. We present a contig assembly of Cascade Hops using PacBio long reads and the diploid genome assembler, FALCON-Unzip2. The assembly has dramatically improved contiguity and completeness over earlier short-read assemblies. The genome is primarily assembled as haplotypes due to the outbred nature of the organism. We explore patterns of haplotype divergence across the assembly and present strategies to deduplicate haplotypes prior to scaffolding


June 1, 2021  |  

Haplotyping of full-length transcript reads from long-read sequencing can reveal allelic imbalances in isoform expression

The Pacific Biosciences Iso-Seq method, which can produce high-quality isoform sequences of 10 kb and longer, has been used to annotate many important plant and animal genomes. Here, we develop an algorithm called IsoPhase that postprocesses Iso-Seq data to retrieve allele specific isoform information. Using simulated data, we show that for both diploid and tetraploid genomes, IsoPhase results in good SNP recovery with low FDR at error rates consistent with CCS reads. We apply IsoPhase to a haplotyperesolved genome assembly and multiple fetal tissue Iso-Seq dataset from a F1 cross of Angus x Brahman cattle subspecies. IsoPhase-called haplotypes were validated by the phased assembly and demonstrate the potential for revealing allelic imbalances in isoform expression.


June 1, 2021  |  

High-quality de novo genome assembly and intra-individual mitochondrial instability in the critically endangered kakapo

The kakapo (Strigops habroptila) is a large, flightless parrot endemic to New Zealand. It is highly endangered with only ~150 individuals remaining, and intensive conservation efforts are underway to save this iconic species from extinction. These include genetic studies to understand critical genes relevant to fertility, adaptation and disease resistance, and genetic diversity across the remaining population for future breeding program decisions. To aid with these efforts, we have generated a high-quality de novo genome assembly using PacBio long-read sequencing. Using the new diploid-aware FALCON-Unzip assembler, the resulting genome of 1.06 Gb has a contig N50 of 5.6 Mb (largest contig 29.3 Mb), >350-times more contiguous compared to a recent short-read assembly of a closely related parrot (kea) species. We highlight the benefits of the higher contiguity and greater completeness of the kakapo genome assembly through examples of fully resolved genes important in wildlife conservation (contrasted with fragmented and incomplete gene resolution in short-read assemblies), in some cases even providing sequence for regions orthologous to gaps of missing sequence in the chicken reference genome. We also highlight the complete resolution of the kakapo mitochondrial genome, fully containing the mitochondrial control region which is missing from the previous dedicated kakapomitochondrial genome NCBI entry. For this region, we observed a marked heterogeneity in the number of tandem repeats in different mtDNAmolecules from a single bird tissue, highlighting the enhanced molecular resolution uniquely afforded by long-read, single-molecule PacBio sequencing.


June 1, 2021  |  

Best practices for whole genome sequencing using the Sequel System

Plant and animal whole genome sequencing has proven to be challenging, particularly due to genome size, high density of repetitive elements and heterozygosity. The Sequel System delivers long reads, high consensus accuracy and uniform coverage, enabling more complete, accurate, and contiguous assemblies of these large complex genomes. The latest Sequel chemistry increases yield up to 8 Gb per SMRT Cell for long insert libraries >20 kb and up to 10 Gb per SMRT Cell for libraries >40 kb. In addition, the recently released SMRTbell Express Template Prep Kit reduces the time (~3 hours) and DNA input (~3 µg), making the workflow easy to use for multi- SMRT Cell projects. Here, we recommend the best practices for whole genome sequencing and de novo assembly of complex plant and animal genomes. Guidelines for constructing large-insert SMRTbell libraries (>30 kb) to generate optimal read lengths and yields using the latest Sequel chemistry are presented. We also describe ways to maximize library yield per preparation from as littles as 3 µg of sheared genomic DNA. The combination of these advances makes plant and animal whole genome sequencing a practical application of the Sequel System.


June 1, 2021  |  

FALCON-Phase integrates PacBio and HiC data for de novo assembly, scaffolding and phasing of a diploid Puerto Rican genome (HG00733)

Haplotype-resolved genomes are important for understanding how combinations of variants impact phenotypes. The study of disease, quantitative traits, forensics, and organ donor matching are aided by phased genomes. Phase is commonly resolved using familial data, population-based imputation, or by isolating and sequencing single haplotypes using fosmids, BACs, or haploid tissues. Because these methods can be prohibitively expensive, or samples may not be available, alternative approaches are required. de novo genome assembly with PacBio Single Molecule, Real-Time (SMRT) data produces highly contiguous, accurate assemblies. For non-inbred samples, including humans, the separate resolution of haplotypes results in higher base accuracy and more contiguous assembled sequences. Two primary methods exist for phased diploid genome assembly. The first, TrioCanu requires Illumina data from parents and PacBio data from the offspring. The long reads from the child are partitioned into maternal and paternal bins using parent-specific sequences; the separate PacBio read bins are then assembled, generating two fully phased genomes. An alternative approach (FALCON-Unzip) does not require parental information and separates PacBio reads, during genome assembly, using heterozygous SNPs. The length of haplotype phase blocks in FALCON-Unzip is limited by the magnitude and distribution of heterozygosity, the length of sequence reads, and read coverage. Because of this, FALCON-Unzip contigs typically contain haplotype-switch errors between phase blocks, resulting in primary contig of mixed parental origin. We developed FALCON-Phase, which integrates Hi-C data downstream of FALCON-Unzip to resolve phase switches along contigs. We applied the method to a human (Puerto Rican, HG00733) and non-human genome assemblies and evaluated accuracy using samples with trio data. In a cattle genome, we observe >96% accuracy in phasing when compared to TrioCanu assemblies as well as parental SNPs. For a high-quality PacBio assembly (>90-fold Sequel coverage) of a Puerto Rican individual we scaffolded the FALCON-Phase contigs, and re-phased the contigs creating a de novo scaffolded, phased diploid assembly with chromosome-scale contiguity.


June 1, 2021  |  

A low DNA input protocol for high-quality PacBio de novo genome assemblies from single invertebrate individuals

A high-quality reference genome is an essential tool for studies of plant and animal genomics. PacBio Single Molecule, Real-Time (SMRT) Sequencing generates long reads with uniform coverage and high consensus accuracy, making it a powerful technology for de novo genome assembly. PacBio is the core technology for many large genome initiatives, however, relatively high DNA input requirements (5 µg for standard library protocol) have placed PacBio out of reach for many projects on small, non-inbred organisms that may have lower DNA content. Here we present high-quality de novo genome assemblies from single invertebrate individuals for two different species: the Anopheles coluzzii mosquito and the Schistosoma mansoni parasitic flatworm. A modified SMRTbell library construction protocol without DNA shearing and size selection was used to generate a SMRTbell library from just 50-100 ng of starting genomic DNA. The libraries were run on the Sequel System with chemistry v3.0 and software v6.0, generating a range of 21-32 Gb of sequence per SMRT Cell with 20 hour movies, and followed by diploid de novo genome assembly with FALCON-Unzip. The resulting assemblies had high contiguity (contig N50s over 3 Mb for both species) and completeness (as determined by conserved BUSCO gene analysis). We were also able to resolve maternal and paternal haplotypes for 1/3 of the genome in both cases. By sequencing and assembling material from a single diploid individual, only two haplotypes are present, simplifying the assembly process compared to samples from multiple pooled individuals. This new low-input approach puts PacBio-based assemblies in reach for small, highly heterozygous organisms that comprise much of the diversity of life. The method presented here can be applied to samples with starting DNA amounts around 100 ng per 250 Mb – 1 Gb genome size.


June 1, 2021  |  

Single molecule high-fidelity (HiFi) Sequencing with >10 kb libraries

Recent improvements in sequencing chemistry and instrument performance combine to create a new PacBio data type, Single Molecule High-Fidelity reads (HiFi reads). Increased read length and improvement in library construction enables average read lengths of 10-20 kb with average sequence identity greater than 99% from raw single molecule reads. The resulting reads have the accuracy comparable to short read NGS but with 50-100 times longer read length. Here we benchmark the performance of this data type by sequencing and genotyping the Genome in a Bottle (GIAB) HG0002 human reference sample from the National Institute of Standards and Technology (NIST). We further demonstrate the general utility of HiFi reads by analyzing multiple clones of Cabernet Sauvignon. Three different clones were sequenced and de novo assembled with the CANU assembly algorithm, generating draft assemblies of very high contiguity equal to or better than earlier assembly efforts using PacBio long reads. Using the Cabernet Sauvignon Clone 8 assembly as a reference, we mapped the HiFi reads generated from Clone 6 and Clone 47 to identify single nucleotide polymorphisms (SNPs) and structural variants (SVs) that are specific to each of the three samples.


June 1, 2021  |  

A high-quality de novo genome assembly from a single mosquito using PacBio sequencing

A high-quality reference genome is an essential tool for studies of plant and animal genomics. PacBio Single Molecule, Real-Time (SMRT) Sequencing generates long reads with uniform coverage and high consensus accuracy, making it a powerful technology for de novo genome assembly. While PacBio is the core technology for many large genome initiatives, relatively high DNA input requirements (3 µg for standard library protocol) have placed PacBio out of reach for many projects on small, non-inbred organisms that may have lower DNA content. Here we present high-quality de novo genome assemblies from single invertebrate individuals for two different species: the Anopheles coluzzii mosquito and the Schistosoma mansoni parasitic flatworm. A modified SMRTbell library construction protocol without DNA shearing and size selection was used to generate a SMRTbell library from just 150 ng of starting genomic DNA. The libraries were run on the Sequel System with chemistry v3.0 and software v6.0, generating a range of 21-32 Gb of sequence per SMRT Cell with 20-hour movies (10-12 Gb for 10-hour movies), and followed by diploid de novo genome assembly with FALCON-Unzip. The resulting assemblies had high contiguity (contig N50s over 3 Mb for both species) and completeness (as determined by conserved BUSCO gene analysis). We were also able to resolve maternal and paternal haplotypes for 1/3 of the genome in both cases. By sequencing and assembling material from a single diploid individual, only two haplotypes are present, simplifying the assembly process compared to samples from multiple pooled individuals. This new low-input approach puts PacBio-based assemblies in reach for small, highly heterozygous organisms that comprise much of the diversity of life. The method presented here can be applied to samples with starting DNA amounts around 150 ng per 250 Mb – 600 Mb genome size.


June 1, 2021  |  

A low DNA input protocol for high-quality PacBio de novo genome assemblies

A high-quality reference genome is an essential tool for studying the genetics of traits and disease, organismal, comparative and conservation biology, and population genomics. PacBio Single Molecule, Real-Time (SMRT) Sequencing generates long reads with uniform coverage and high consensus accuracy, making it a powerful technology for de novo genome assembly. Improvements in throughput and concomitant reductions in cost have made PacBio an attractive core technology for many large genome initiatives. However, relatively high DNA input requirements (3 µg for standard library protocol) have placed PacBio out of reach for many projects on small organisms that may have lower DNA content or on projects with limited input DNA for other reasons. Here we present a modified SMRTbell library construction protocol without DNA shearing or size selection that can be used to generate a SMRTbell library from just 150 ng of starting genomic DNA. Remarkably, the protocol enables high quality de novo assemblies from single invertebrate individuals and is applied to taxonomically diverse samples. By sequencing and assembling material from a single diploid individual, only two haplotypes are present, simplifying the assembly process compared to samples from multiple pooled individuals. The libraries were run on the Sequel System with chemistry v3.0 and software v6.0, generating ~11 Gb of sequence per SMRT Cell with 10 hour movies, and followed by de novo genome assembly with FALCON. The resulting assemblies had high contiguity (contig N50s over 1 Mb) and completeness (as determined by conserved BUSCO gene analysis) when at least 30-fold unique molecular coverage is obtained. This new low-input approach now puts PacBio-based assemblies in reach for small highly heterozygous organisms that comprise much of the diversity of life. The method presented here is scalable and can be applied to samples with starting DNA amounts of 150 ng per 300 Mb genome size.


June 1, 2021  |  

High-quality human genomes achieved through HiFi sequence data and FALCON-Unzip assembly

De novo assemblies of human genomes from accurate (85-90%), continuous long reads (CLR) now approach the human reference genome in contiguity, but the assembly base pair accuracy is typically below QV40 (99.99%), an order-of-magnitude lower than the standard for finished references. The base pair errors complicate downstream interpretation, particularly false positive indels that lead to false gene loss through frameshifts. PacBio HiFi sequence data, which are both long (>10 kb) and very accurate (>99.9%) at the individual sequence read level, enable a new paradigm in human genome assembly. Haploid human assemblies using HiFi data achieve similar contiguity to those using CLR data and are highly accurate at the base level1. Furthermore, HiFi assemblies resolve more high-identity sequences such as segmental duplications2. To enable HiFi assembly in diploid human samples, we have extended the FALCON-Unzip assembler to work directly with HiFi reads. Here we present phased human diploid genome assemblies from HiFi sequencing of HG002, HG005, and the Vertebrate Genome Project (VGP) mHomSap1 trio on the PacBio Sequel II System. The HiFi assemblies all exceed the VGP’s quality guidelines, approaching QV50 (99.999%) accuracy. For HG002, 60% of the genome was haplotype-resolved, with phase-block N50 of 143Kbp and phasing accuracy of 99.6%. The overall mean base accuracy of the assembly was QV49.7. In conclusion, HiFi data show great promise towards complete, contiguous, and accurate diploid human assemblies.


June 1, 2021  |  

Every species can be a model: Reference-quality PacBio genomes from single insects

A high-quality reference genome is an essential resource for primary and applied research across the tree of life. Genome projects for small-bodied, non-model organisms such as insects face several unique challenges including limited DNA input quantities, high heterozygosity, and difficulty of culturing or inbreeding in the lab. Recent progress in PacBio library preparation protocols, sequencing throughput, and read accuracy address these challenges. We present several case studies including the Red Admiral (Vanessa atalanta), Monarch Butterfly (Danaus plexippus), and Anopheles malaria mosquitoes that highlight the benefits of sequencing single individuals for de novo genome assembly projects, and the ease at which these projects can be conducted by individual research labs. Sampled individuals may originate from lab colonies of interest to the research community or be sourced from the wild to better capture natural variation in a focal population. Where genomic DNA quantities are limited, the PacBio Low DNA Input Protocol requires ~100 ng of input DNA. Low DNA input samples with 500 Mb genome size or less can be multiplexed on a single SMRT Cell 8M on the Sequel II System. For samples with more abundant DNA quantity, size-selected libraries may be constructed to maximize sequencing yield. Both low DNA input and size-selected libraries can be used to generate HiFi reads, whose quality is Q20 or above (1% error or less) and lengths range from 10 – 25 kb. With HiFi reads, de novo assembly computation is greatly simplified relative to long read methods due to smaller sequence file sizes and more rapid analysis, resulting in highly accurate, contiguous, complete, and haplotype-resolved assemblies.


February 5, 2021  |  

Video: Overview of SMRT technology

PacBio’s SMRT technology harnesses the natural process of DNA replication, which is a highly efficient and accurate process. Our SMRT technology enables the observation of DNA synthesis as it occurs…


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.