Menu
April 21, 2020  |  

Genome assembly and gene expression in the American black bear provides new insights into the renal response to hibernation.

The prevalence of chronic kidney disease (CKD) is rising worldwide and 10-15% of the global population currently suffers from CKD and its complications. Given the increasing prevalence of CKD there is an urgent need to find novel treatment options. The American black bear (Ursus americanus) copes with months of lowered kidney function and metabolism during hibernation without the devastating effects on metabolism and other consequences observed in humans. In a biomimetic approach to better understand kidney adaptations and physiology in hibernating black bears, we established a high-quality genome assembly. Subsequent RNA-Seq analysis of kidneys comparing gene expression profiles in black bears entering (late fall) and emerging (early spring) from hibernation identified 169 protein-coding genes that were differentially expressed. Of these, 101 genes were downregulated and 68 genes were upregulated after hibernation. Fold changes ranged from 1.8-fold downregulation (RTN4RL2) to 2.4-fold upregulation (CISH). Most notable was the upregulation of cytokine suppression genes (SOCS2, CISH, and SERPINC1) and the lack of increased expression of cytokines and genes involved in inflammation. The identification of these differences in gene expression in the black bear kidney may provide new insights in the prevention and treatment of CKD. © The Author(s) 2018. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.


April 21, 2020  |  

Genome-Scale Sequence Disruption Following Biolistic Transformation in Rice and Maize.

Biolistic transformation delivers nucleic acids into plant cells by bombarding the cells with microprojectiles, which are micron-scale, typically gold particles. Despite the wide use of this technique, little is known about its effect on the cell’s genome. We biolistically transformed linear 48-kb phage lambda and two different circular plasmids into rice (Oryza sativa) and maize (Zea mays) and analyzed the results by whole genome sequencing and optical mapping. Although some transgenic events showed simple insertions, others showed extreme genome damage in the form of chromosome truncations, large deletions, partial trisomy, and evidence of chromothripsis and breakage-fusion bridge cycling. Several transgenic events contained megabase-scale arrays of introduced DNA mixed with genomic fragments assembled by nonhomologous or microhomology-mediated joining. Damaged regions of the genome, assayed by the presence of small fragments displaced elsewhere, were often repaired without a trace, presumably by homology-dependent repair (HDR). The results suggest a model whereby successful biolistic transformation relies on a combination of end joining to insert foreign DNA and HDR to repair collateral damage caused by the microprojectiles. The differing levels of genome damage observed among transgenic events may reflect the stage of the cell cycle and the availability of templates for HDR. © 2019 American Society of Plant Biologists. All rights reserved.


April 21, 2020  |  

A 12-kb structural variation in progressive myoclonic epilepsy was newly identified by long-read whole-genome sequencing.

We report a family with progressive myoclonic epilepsy who underwent whole-exome sequencing but was negative for pathogenic variants. Similar clinical courses of a devastating neurodegenerative phenotype of two affected siblings were highly suggestive of a genetic etiology, which indicates that the survey of genetic variation by whole-exome sequencing was not comprehensive. To investigate the presence of a variant that remained unrecognized by standard genetic testing, PacBio long-read sequencing was performed. Structural variant (SV) detection using low-coverage (6×) whole-genome sequencing called 17,165 SVs (7,216 deletions and 9,949 insertions). Our SV selection narrowed down potential candidates to only five SVs (two deletions and three insertions) on the genes tagged with autosomal recessive phenotypes. Among them, a 12.4-kb deletion involving the CLN6 gene was the top candidate because its homozygous abnormalities cause neuronal ceroid lipofuscinosis. This deletion included the initiation codon and was found in a GC-rich region containing multiple repetitive elements. These results indicate the presence of a causal variant in a difficult-to-sequence region and suggest that such variants that remain enigmatic after the application of current whole-exome sequencing technology could be uncovered by unbiased application of long-read whole-genome sequencing.


April 21, 2020  |  

Fast and accurate genomic analyses using genome graphs.

The human reference genome serves as the foundation for genomics by providing a scaffold for alignment of sequencing reads, but currently only reflects a single consensus haplotype, thus impairing analysis accuracy. Here we present a graph reference genome implementation that enables read alignment across 2,800 diploid genomes encompassing 12.6 million SNPs and 4.0 million insertions and deletions (indels). The pipeline processes one whole-genome sequencing sample in 6.5?h using a system with 36?CPU cores. We show that using a graph genome reference improves read mapping sensitivity and produces a 0.5% increase in variant calling recall, with unaffected specificity. Structural variations incorporated into a graph genome can be genotyped accurately under a unified framework. Finally, we show that iterative augmentation of graph genomes yields incremental gains in variant calling accuracy. Our implementation is an important advance toward fulfilling the promise of graph genomes to radically enhance the scalability and accuracy of genomic analyses.


April 21, 2020  |  

Full-length transcriptome analysis of Litopenaeus vannamei reveals transcript variants involved in the innate immune system.

To better understand the immune system of shrimp, this study combined PacBio isoform sequencing (Iso-Seq) and Illumina paired-end short reads sequencing methods to discover full-length immune-related molecules of the Pacific white shrimp, Litopenaeus vannamei. A total of 72,648 nonredundant full-length transcripts (unigenes) were generated with an average length of 2545 bp from five main tissues, including the hepatopancreas, cardiac stomach, heart, muscle, and pyloric stomach. These unigenes exhibited a high annotation rate (62,164, 85.57%) when compared against NR, NT, Swiss-Prot, Pfam, GO, KEGG and COG databases. A total of 7544 putative long noncoding RNAs (lncRNAs) were detected and 1164 nonredundant full-length transcripts (449 UniTransModels) participated in the alternative splicing (AS) events. Importantly, a total of 5279 nonredundant full-length unigenes were successfully identified, which were involved in the innate immune system, including 9 immune-related processes, 19 immune-related pathways and 10 other immune-related systems. We also found wide transcript variants, which increased the number and function complexity of immune molecules; for example, toll-like receptors (TLRs) and interferon regulatory factors (IRFs). The 480 differentially expressed genes (DEGs) were significantly higher or tissue-specific expression patterns in the hepatopancreas compared with that in other four tested tissues (FDR <0.05). Furthermore, the expression levels of six selected immune-related DEGs and putative IRFs were validated using real-time PCR technology, substantiating the reliability of the PacBio Iso-seq results. In conclusion, our results provide new genetic resources of long-read full-length transcripts data and information for identifying immune-related genes, which are an invaluable transcriptomic resource as genomic reference, especially for further exploration of the innate immune and defense mechanisms of shrimp. Copyright © 2019 Elsevier Ltd. All rights reserved.


April 21, 2020  |  

TranscriptClean: variant-aware correction of indels, mismatches and splice junctions in long-read transcripts.

Long-read, single-molecule sequencing platforms hold great potential for isoform discovery and characterization of multi-exon transcripts. However, their high error rates are an obstacle to distinguishing novel transcript isoforms from sequencing artifacts. Therefore, we developed the package TranscriptClean to correct mismatches, microindels and noncanonical splice junctions in mapped transcripts using the reference genome while preserving known variants.Our method corrects nearly all mismatches and indels present in a publically available human PacBio Iso-seq dataset, and rescues 39% of noncanonical splice junctions.All Python and R scripts used in this paper are available at https://github.com/dewyman/TranscriptClean.


April 21, 2020  |  

Genome Sequence of Jaltomata Addresses Rapid Reproductive Trait Evolution and Enhances Comparative Genomics in the Hyper-Diverse Solanaceae.

Within the economically important plant family Solanaceae, Jaltomata is a rapidly evolving genus that has extensive diversity in flower size and shape, as well as fruit and nectar color, among its ~80 species. Here, we report the whole-genome sequencing, assembly, and annotation, of one representative species (Jaltomata sinuosa) from this genus. Combining PacBio long reads (25×) and Illumina short reads (148×) achieved an assembly of ~1.45?Gb, spanning ~96% of the estimated genome. Ninety-six percent of curated single-copy orthologs in plants were detected in the assembly, supporting a high level of completeness of the genome. Similar to other Solanaceous species, repetitive elements made up a large fraction (~80%) of the genome, with the most recently active element, Gypsy, expanding across the genome in the last 1-2 Myr. Computational gene prediction, in conjunction with a merged transcriptome data set from 11 tissues, identified 34,725 protein-coding genes. Comparative phylogenetic analyses with six other sequenced Solanaceae species determined that Jaltomata is most likely sister to Solanum, although a large fraction of gene trees supported a conflicting bipartition consistent with substantial introgression between Jaltomata and Capsicum after these species split. We also identified gene family dynamics specific to Jaltomata, including expansion of gene families potentially involved in novel reproductive trait development, and loss of gene families that accompanied the loss of self-incompatibility. This high-quality genome will facilitate studies of phenotypic diversification in this rapidly radiating group and provide a new point of comparison for broader analyses of genomic evolution across the Solanaceae.


April 21, 2020  |  

The conservation of polyol transporter proteins and their involvement in lichenized Ascomycota.

In lichen symbiosis, polyol transfer from green algae is important for acquiring the fungal carbon source. However, the existence of polyol transporter genes and their correlation with lichenization remain unclear. Here, we report candidate polyol transporter genes selected from the genome of the lichen-forming fungus (LFF) Ramalina conduplicans. A phylogenetic analysis using characterized polyol and monosaccharide transporter proteins and hypothetical polyol transporter proteins of R. conduplicans and various ascomycetous fungi suggested that the characterized yeast’ polyol transporters form multiple clades with the polyol transporter-like proteins selected from the diverse ascomycetous taxa. Thus, polyol transporter genes are widely conserved among Ascomycota, regardless of lichen-forming status. In addition, the phylogenetic clusters suggested that LFFs belonging to Lecanoromycetes have duplicated proteins in each cluster. Consequently, the number of sequences similar to characterized yeast’ polyol transporters were evaluated using the genomes of 472 species or strains of Ascomycota. Among these, LFFs belonging to Lecanoromycetes had greater numbers of deduced polyol transporter proteins. Thus, various polyol transporters are conserved in Ascomycota and polyol transporter genes appear to have expanded during the evolution of Lecanoromycetes. Copyright © 2019 British Mycological Society. Published by Elsevier Ltd. All rights reserved.


April 21, 2020  |  

Symbiotic organs shaped by distinct modes of genome evolution in cephalopods.

Microbes have been critical drivers of evolutionary innovation in animals. To understand the processes that influence the origin of specialized symbiotic organs, we report the sequencing and analysis of the genome of Euprymna scolopes, a model cephalopod with richly characterized host-microbe interactions. We identified large-scale genomic reorganization shared between E. scolopes and Octopus bimaculoides and posit that this reorganization has contributed to the evolution of cephalopod complexity. To reveal genomic signatures of host-symbiont interactions, we focused on two specialized organs of E. scolopes: the light organ, which harbors a monoculture of Vibrio fischeri, and the accessory nidamental gland (ANG), a reproductive organ containing a bacterial consortium. Our findings suggest that the two symbiotic organs within E. scolopes originated by different evolutionary mechanisms. Transcripts expressed in these microbe-associated tissues displayed their own unique signatures in both coding sequences and the surrounding regulatory regions. Compared with other tissues, the light organ showed an abundance of genes associated with immunity and mediating light, whereas the ANG was enriched in orphan genes known only from E. scolopes Together, these analyses provide evidence for different patterns of genomic evolution of symbiotic organs within a single host. Copyright © 2019 the Author(s). Published by PNAS.


April 21, 2020  |  

PacBio full-length cDNA sequencing integrated with RNA-seq reads drastically improves the discovery of splicing transcripts in rice.

In eukaryotes, alternative splicing (AS) greatly expands the diversity of transcripts. However, it is challenging to accurately determine full-length splicing isoforms. Recently, more studies have taken advantage of Pacific Bioscience (PacBio) long-read sequencing to identify full-length transcripts. Nevertheless, the high error rate of PacBio reads seriously offsets the advantages of long reads, especially for accurately identifying splicing junctions. To best capitalize on the features of long reads, we used Illumina RNA-seq reads to improve PacBio circular consensus sequence (CCS) quality and to validate splicing patterns in the rice transcriptome. We evaluated the impact of CCS accuracy on the number and the validation rate of splicing isoforms, and integrated a comprehensive pipeline of splicing transcripts analysis by Iso-Seq and RNA-seq (STAIR) to identify the full-length multi-exon isoforms in rice seedling transcriptome (Oryza sativa L. ssp. japonica). STAIR discovered 11 733 full-length multi-exon isoforms, 6599 more than the SMRT Portal RS_IsoSeq pipeline did. Of these splicing isoforms identified, 4453 (37.9%) were missed in assembled transcripts from RNA-seq reads, and 5204 (44.4%), including 268 multi-exon long non-coding RNAs (lncRNAs), were not reported in the MSU_osa1r7 annotation. Some randomly selected unreported splicing junctions were verified by polymerase chain reaction (PCR) amplification. In addition, we investigated alternative polyadenylation (APA) events in transcripts and identified 829 major polyadenylation [poly(A)] site clusters (PACs). The analysis of splicing isoforms and APA events will facilitate the annotation of the rice genome and studies on the expression and polyadenylation of AS genes in different developmental stages or growth conditions of rice. © 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd.


April 21, 2020  |  

Alternative Splicing of the Delta-Opioid Receptor Gene Suggests Existence of New Functional Isoforms.

The delta-opioid receptor (DOPr) participates in mediating the effects of opioid analgesics. However, no selective agonists have entered clinical care despite potential to ameliorate many neurological and psychiatric disorders. In an effort to address the drug development challenges, the functional contribution of receptor isoforms created by alternative splicing of the three-exonic coding gene, OPRD1, has been overlooked. We report that the gene is transcriptionally more diverse than previously demonstrated, producing novel protein isoforms in humans and mice. We provide support for the functional relevance of splice variants through context-dependent expression profiling (tissues, disease model) and conservation of the transcriptional landscape in closely related vertebrates. The conserved alternative transcriptional events have two distinct patterns. First, cassette exon inclusions between exons 1 and 2 interrupt the reading frame, producing truncated receptor fragments comprising only the first transmembrane (TM) domain, despite the lack of exact exon orthologues between distant species. Second, a novel promoter and transcriptional start site upstream of exon 2 produces a transcript of an N-terminally truncated 6TM isoform. However, a fundamental difference in the exonic landscaping as well as translation and translation products poses limits for modelling the human DOPr receptor system in mice.


April 21, 2020  |  

Highly flexible infection programs in a specialized wheat pathogen.

Many filamentous plant pathogens exhibit high levels of genomic variability, yet the impact of this variation on host-pathogen interactions is largely unknown. We have addressed host specialization in the wheat pathogen Zymoseptoria tritici. Our study builds on comparative analyses of infection and gene expression phenotypes of three isolates and reveals the extent to which genomic variation translates into phenotypic variation. The isolates exhibit genetic and genomic variation but are similarly virulent. By combining confocal microscopy, disease monitoring, staining of ROS, and comparative transcriptome analyses, we conducted a detailed comparison of the infection processes of these isolates in a susceptible wheat cultivar. We characterized four core infection stages: establishment, biotrophic growth, lifestyle transition, and necrotrophic growth and asexual reproduction that are shared by the three isolates. However, we demonstrate differentiated temporal and spatial infection development and significant differences in the expression profiles of the three isolates during the infection stages. More than 20% of the genes were differentially expressed and these genes were located significantly closer to transposable elements, suggesting an impact of epigenetic regulation. Further, differentially expressed genes were enriched in effector candidates suggesting that isolate-specific strategies for manipulating host defenses are present in Z. tritici. We demonstrate that individuals of a host-specialized pathogen have highly differentiated infection programs characterized by flexible infection development and functional redundancy. This illustrates how high genetic diversity in pathogen populations results in highly differentiated infection phenotypes, which fact needs to be acknowledged to understand host-pathogen interactions and pathogen evolution.


April 21, 2020  |  

A systematic review of the Trypanosoma cruzi genetic heterogeneity, host immune response and genetic factors as plausible drivers of chronic chagasic cardiomyopathy.

Chagas disease is a complex tropical pathology caused by the kinetoplastid Trypanosoma cruzi. This parasite displays massive genetic diversity and has been classified by international consensus in at least six Discrete Typing Units (DTUs) that are broadly distributed in the American continent. The main clinical manifestation of the disease is the chronic chagasic cardiomyopathy (CCC) that is lethal in the infected individuals. However, one intriguing feature is that only 30-40% of the infected individuals will develop CCC. Some authors have suggested that the immune response, host genetic factors, virulence factors and even the massive genetic heterogeneity of T. cruzi are responsible of this clinical pattern. To date, no conclusive data support the reason why a few percentages of the infected individuals will develop CCC. Therefore, we decided to conduct a systematic review analysing the host genetic factors, immune response, cytokine production, virulence factors and the plausible association of the parasite DTUs and CCC. The epidemiological and clinical implications are herein discussed.


April 21, 2020  |  

Toxin and genome evolution in a Drosophila defensive symbiosis.

Defenses conferred by microbial symbionts play a vital role in the health and fitness of their animal hosts. An important outstanding question in the study of defensive symbiosis is what determines long term stability and effectiveness against diverse natural enemies. In this study, we combine genome and transcriptome sequencing, symbiont transfection and parasite protection experiments, and toxin activity assays to examine the evolution of the defensive symbiosis between Drosophila flies and their vertically transmitted Spiroplasma bacterial symbionts, focusing in particular on ribosome-inactivating proteins (RIPs), symbiont-encoded toxins that have been implicated in protection against both parasitic wasps and nematodes. Although many strains of Spiroplasma, including the male-killing symbiont (sMel) of Drosophila melanogaster, protect against parasitic wasps, only the strain (sNeo) that infects the mycophagous fly Drosophila neotestacea appears to protect against parasitic nematodes. We find that RIP repertoire is a major differentiating factor between strains that do and do not offer nematode protection, and that sMel RIPs do not show activity against nematode ribosomes in vivo. We also discovered a strain of Spiroplasma infecting a mycophagous phorid fly, Megaselia nigra. Although both the host and its Spiroplasma are distantly related to D. neotestacea and its symbiont, genome sequencing revealed that the M. nigra symbiont encodes abundant and diverse RIPs, including plasmid-encoded toxins that are closely related to the RIPs in sNeo. Our results suggest that distantly related Spiroplasma RIP toxins may perform specialized functions with regard to parasite specificity and suggest an important role for horizontal gene transfer in the emergence of novel defensive phenotypes.


April 21, 2020  |  

DNA Methylation at the Schizophrenia and Intelligence GWAS-Implicated MIR137HG Locus May Be Associated with Disease and Cognitive Functions

The largest genome-wide association studies have identified schizophrenia and intelligence associated variants in the MIR137HG locus containing genes encoding microRNA-137 and microRNA-2682. In the present study, we investigated DNA methylation in the MIR137HG intragenic CpG island (CGI) in the peripheral blood of 44 patients with schizophrenia and 50 healthy controls. The CGI included the entire MIR137 gene and the region adjacent to the 5′-end of MIR2682. The aim of the study was to examine the relationship of the CGI methylation with schizophrenia and cognitive functioning. The methylation level of 91 CpG located in the selected region was established for each participant by means of single-molecule real-time bisulfite sequencing. All subjects completed the battery of neuropsychological tests. We found that the CGI was hypomethylated in both groups, except for one site—CpG (chr1: 98?511?049), with significant interindividual variability in methylation. A higher level of methylation of this CpG was seen in male patients and was associated with a decrease in the cognitive index in the combined sample of patients and controls. Our data suggest that further investigation of mechanisms that regulate the MIR137 and MIR2682 genes expression might help to understand the molecular basis of cognitive deficits in schizophrenia.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.