June 1, 2021  |  

Long-read assembly of the Aedes aegypti Aag2 cell line genome resolves ancient endogenous viral elements

Transmission of arboviruses such as Dengue Virus by Aedes aegypti causes debilitating disease across the globe. Disease in humans can include severe acute symptoms such as hemorrhagic fever and organ failure, but mosquitoes tolerate high titers of virus in a persistent infection. The mechanisms responsible for this viral tolerance are unclear. Recent publications highlighted the integration of genetic material from non-retroviral RNA viruses into the genome of the host during infection that relies upon endogenous retro-transcriptase activity from transposons. These endogenous viral elements (EVEs) found in the genome are predicted to be ancient, and at least some EVEs are under purifying selection, suggesting they are beneficial to the host. To characterize EVE biogenesis in a tractable system, we sequenced the Ae. aegypti cell line, Aag2, to 58-fold coverage and present a de novo assembly of the genome. The assembly contains 1.7 Gb of genomic and 255 Mb of alternative haplotype specific sequence, consisting of contigs with a N50 of 1.4 Mb; a value that, when compared with other assemblies of the Aedes genus, is from 1-3 orders of magnitude longer. The Aag2 genome is highly repetitive (70%), most of which is classified as transposable elements (60%). We identify EVEs in the genome homologous to a range of extant viruses, many of which cluster in these regions of repetitive DNA. The contiguous assembly allows for more comprehensive identification of the transposable elements and EVEs that are most likely to be lost in assemblies lacking the read length of SMRT Sequencing.


June 1, 2021  |  

Long-read assembly of the Aedes aegypti Aag2 cell line genome resolves ancient endogenous viral elements

Transmission of arboviruses such as Dengue and Zika viruses by Aedes aegypti causes widespread and debilitating disease across the globe. Disease in humans can include severe acute symptoms such as hemorrhagic fever, organ failure, and encephalitis; and yet, mosquitoes tolerate high titers of virus in a persistent infection. The mechanisms responsible for tolerance to viral infection in mosquitoes are still unclear. Recent publications have highlighted the integration of genetic material from non-retroviral RNA viruses into the genome of the host during infection that relies upon endogenous retro-transcriptase activity from transposons. These endogenous viral elements (EVEs) found in the genome are predicted to be ancient and at least some EVEs are under purifying selection, which suggests that they are beneficial to the host. In order characterize EVE biogenesis in a tractable system we sequenced the Ae. aegypti cell line, Aag2, to 58X coverage and here present a de novo assembly of the genome. The assembly consists of 1.7 Gb of genomic and 255 Mb of alternative haplotype specific sequence, made up of contigs with a N50 of 1.4 Mb; a value that, when compared with other assemblies of the Aedes genus, is from 1-3 orders of magnitude longer. The Aag2 genome is highly repetitive (70%), most of which is classified as transposable elements (60%). We identify a plethora of EVEs in the genome homologous to a diverse range of extant viruses, many of which cluster in these regions of highly repetitive DNA. The highly contiguous nature of this assembly allows for a more comprehensive identification of the transposable elements and EVEs that are most likely to be lost in assemblies lacking the read length of SMRT Sequencing. Transmission of arboviruses such as Dengue Virus by Aedes aegypti causes widespread and debilitating disease across the globe. Disease in humans can include severe acute symptoms such as hemorrhagic fever, organ failure, and encephalitis; and yet, mosquitoes tolerate high titers of virus in a persistent infection. The mechanisms responsible for tolerance to viral infection in mosquitoes are still unclear. Recent publications have highlighted the integration of genetic material from non-retroviral RNA viruses into the genome of the host during infection that relies upon endogenous retro-transcriptase activity from transposons. These endogenous viral elements (EVEs) found in the genome are predicted to be ancient and at least some EVEs are under purifying selection, which suggests that they are beneficial to the host. In order characterize EVE biogenesis in a tractable system we sequenced the Ae. aegypti cell line, Aag2, to 58X coverage and here present a de novo assembly of the genome. The assembly consists of 1.7 Gb of genomic and 255 Mb of alternative haplotype specific sequence, made up of contigs with a N50 of 1.4 Mb; a value that, when compared with other assemblies of the Aedes genus, is from 1-3 orders of magnitude longer. The Aag2 genome is highly repetitive (70%), most of which is classified as transposable elements (60%). We identify a plethora of EVEs in the genome homologous to a diverse range of extant viruses, many of which cluster in these regions of highly repetitive DNA. The highly contiguous nature of this assembly allows for a more comprehensive identification of the transposable elements and EVEs that are most likely to be lost in assemblies lacking the read length of SMRT Sequencing. Transmission of arboviruses such as Dengue Virus by Aedes aegypti causes widespread and debilitating disease across the globe. Disease in humans can include severe acute symptoms such as hemorrhagic fever, organ failure, and encephalitis; and yet, mosquitoes tolerate high titers of virus in a persistent infection. The mechanisms responsible for tolerance to viral infection in mosquitoes are still unclear.


June 1, 2021  |  

A high-quality genome assembly of SMRT Sequences reveals long-range haplotype structure in the diploid mosquito Aedes aegypti

Aedes aegypti is a tropical and subtropical mosquito vector for Zika, yellow fever, dengue fever, chikungunya, and other diseases. The outbreak of Zika in the Americas, which can cause microcephaly in the fetus of infected women, adds urgency to the need for a high-quality reference genome in order to better understand the organism’s biology and its role in transmitting human disease. We describe the first diploid assembly of an insect genome, using SMRT sequencing and the open-source assembler FALCON-Unzip. This assembly has high contiguity (contig N50 1.3 Mb), is more complete than previous assemblies (Length 1.45 Gb with 87% BUSCO genes complete), and is high quality (mean base >QV30). Long-range haplotype structure, in some cases encompassing more than 4 Mb of extremely divergent homologous sequence, is resolved using a combination of the FALCON-Unzip assembler, genome annotation, coverage depth, and pairwise nucleotide alignments.


June 1, 2021  |  

A high-quality genome assembly of SMRT sequences reveals long range haplotype structure in the diploid mosquito Aedes aegypti

Aedes aegypti is a tropical and subtropical mosquito vector for Zika, yellow fever, dengue fever, and chikungunya. We describe the first diploid assembly of an insect genome, using SMRT Sequencing and the open-source assembler FALCON-Unzip. This assembly has high contiguity (contig N50 1.3 Mb), is more complete than previous assemblies (Length 1.45 Gb with 87% BUSCO genes complete), and is high quality (mean base >QV30 after polishing). Long-range haplotype structure, in some cases encompassing more than 4 Mb of extremely divergent homologous sequence with dramatic differences in coding sequence content, is resolved using a combination of the FALCON-Unzip assembler, genome annotation, coverage depth, and pairwise nucleotide alignments.


April 21, 2020  |  

Insect genomes: progress and challenges.

In the wake of constant improvements in sequencing technologies, numerous insect genomes have been sequenced. Currently, 1219 insect genome-sequencing projects have been registered with the National Center for Biotechnology Information, including 401 that have genome assemblies and 155 with an official gene set of annotated protein-coding genes. Comparative genomics analysis showed that the expansion or contraction of gene families was associated with well-studied physiological traits such as immune system, metabolic detoxification, parasitism and polyphagy in insects. Here, we summarize the progress of insect genome sequencing, with an emphasis on how this impacts research on pest control. We begin with a brief introduction to the basic concepts of genome assembly, annotation and metrics for evaluating the quality of draft assemblies. We then provide an overview of genome information for numerous insect species, highlighting examples from prominent model organisms, agricultural pests and disease vectors. We also introduce the major insect genome databases. The increasing availability of insect genomic resources is beneficial for developing alternative pest control methods. However, many opportunities remain for developing data-mining tools that make maximal use of the available insect genome resources. Although rapid progress has been achieved, many challenges remain in the field of insect genomics. © 2019 The Royal Entomological Society.


April 21, 2020  |  

Complete Genome Sequence of the Wolbachia wAlbB Endosymbiont of Aedes albopictus.

Wolbachia, an alpha-proteobacterium closely related to Rickettsia, is a maternally transmitted, intracellular symbiont of arthropods and nematodes. Aedes albopictus mosquitoes are naturally infected with Wolbachia strains wAlbA and wAlbB. Cell line Aa23 established from Ae. albopictus embryos retains only wAlbB and is a key model to study host-endosymbiont interactions. We have assembled the complete circular genome of wAlbB from the Aa23 cell line using long-read PacBio sequencing at 500× median coverage. The assembled circular chromosome is 1.48 megabases in size, an increase of more than 300 kb over the published draft wAlbB genome. The annotation of the genome identified 1,205 protein coding genes, 34 tRNA, 3 rRNA, 1 tmRNA, and 3 other ncRNA loci. The long reads enabled sequencing over complex repeat regions which are difficult to resolve with short-read sequencing. Thirteen percent of the genome comprised insertion sequence elements distributed throughout the genome, some of which cause pseudogenization. Prophage WO genes encoding some essential components of phage particle assembly are missing, while the remainder are found in five prophage regions/WO-like islands or scattered around the genome. Orthology analysis identified a core proteome of 535 orthogroups across all completed Wolbachia genomes. The majority of proteins could be annotated using Pfam and eggNOG analyses, including ankyrins and components of the Type IV secretion system. KEGG analysis revealed the absence of five genes in wAlbB which are present in other Wolbachia. The availability of a complete circular chromosome from wAlbB will enable further biochemical, molecular, and genetic analyses on this strain and related Wolbachia. © The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.


April 21, 2020  |  

A chromosome-level genome assembly of Cydia pomonella provides insights into chemical ecology and insecticide resistance.

The codling moth Cydia pomonella, a major invasive pest of pome fruit, has spread around the globe in the last half century. We generated a chromosome-level scaffold assembly including the Z chromosome and a portion of the W chromosome. This assembly reveals the duplication of an olfactory receptor gene (OR3), which we demonstrate enhances the ability of C. pomonella to exploit kairomones and pheromones in locating both host plants and mates. Genome-wide association studies contrasting insecticide-resistant and susceptible strains identify hundreds of single nucleotide polymorphisms (SNPs) potentially associated with insecticide resistance, including three SNPs found in the promoter of CYP6B2. RNAi knockdown of CYP6B2 increases C. pomonella sensitivity to two insecticides, deltamethrin and azinphos methyl. The high-quality genome assembly of C. pomonella informs the genetic basis of its invasiveness, suggesting the codling moth has distinctive capabilities and adaptive potential that may explain its worldwide expansion.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.