Explore the types of human genomic variation and the diseases known to be caused by structural variants.
Structural variation accounts for much of the variation among human genomes. Structural variants of all types are known to cause Mendelian disease and contribute to complex disease. Learn how long-read sequencing is enabling detection of the full spectrum of structural variants to advance the study of human disease, evolution and genetic diversity.
Explore how long-read sequencing enables solving of rare and mendelian diseases.
To bring personalized medicine to all patients, cancer researchers need more reliable and comprehensive views of somatic variants of all sizes that drive cancer biology.
With Single Molecule, Real-Time (SMRT) Sequencing and the Sequel System, you can easily and cost effectively generate highly accurate long reads (HiFi reads, >99% single-molecule accuracy) from genes or regions of interest ranging in size from several hundred base pairs to 20 kb. Target all types of variation across relevant genomic regions, including low complexity regions like repeat expansions, promoters, and flanking regions of transposable elements.
With highly accurate long reads (HiFi reads) from the Sequel II System, powered by Single Molecule, Real-Time (SMRT) Sequencing technology, you can comprehensively detect variants in a human genome. HiFi reads provide high precision and recall for single nucleotide variants (SNVs), indels, structural variants (SVs), and copy number variants (CNVs), including in difficult-to-map repetitive regions.
With the Sequel II System powered by Single Molecule, Real-Time (SMRT) Sequencing technology and SMRT Link v8.0, you can affordably and effectively detect structural variants (SVs), copy number variants, and large indels ranging in size from tens to thousands of base pairs. PacBio long-read whole genome sequencing comprehensively resolves variants in an individual with high precision and recall. For population genetics and pedigree studies, joint calling powers rapid discovery of common variants within a sample cohort.
Discover how HiFi reads enable every aspect of viral research, from understanding viral genomes to the host immune response.
Part III of The New Biology documentary. This documentary film features the wave of cutting-edge technologies that now provide the opportunity to create predictive models of living systems, and gain wisdom about the fundamental nature of life itself. The potential impact for humanity is immense: from fighting complex diseases such as cancer, enabling proactive surveillance of virulent pathogens, and increasing food crop production.
Yunfei Guo, from the University of Southern California, presents his ASHG 2015 poster on a de novo assembly of a diploid Asian genome. The uniform coverage of long-read sequencing helped access regions previously unresolvable due to high GC bias or long repeats. The assembly allowed scientists to fill some 400 gaps in the latest human reference genome, including some as long as 50 kb.
Fritz Sedlazeck, a postdoc at Johns Hopkins University, describes his structural variant detection tool Sniffles in this poster from AGBT 2016. Included: examples of structural variants that could not be detected with other algorithms.
Andrew Carroll, Director of Science at DNAnexus, presents how to greatly improve the accuracy of SV-calling by using long-read PacBio sequencing and fast and easy-to-run cloud-optimized apps like PBHoney, Parliament, and Sniffles.
In this video, PacBio scientists present ongoing improvements to the Integrative Genomics Viewer (IGV) and demonstrate how multiple new features improve visualization support for PacBio long-read sequencing data. The video describes these recent updates which include; quick consensus accuracy mode to hide random single-molecule errors, direct phasing of haplotypes using long-read evidence, and visual annotation of insertions and deletions relative to the reference with enumeration of gap size for individual reads. These new features are available now in the development version of IGV, which can be found at http://software.broadinstitute.org/software/igv/download_snapshot. The Sequel sequencing data used in this demonstration is also publicly…
PacBio bioinformatician Aaron Wenger presents this ASHG 2016 poster demonstrating human structural variation detection at varying coverage levels with SMRT Sequencing on the Sequel System. Results were compared to truth sets for well-characterized genomes. Results indicate that even low coverage of SMRT Sequencing makes it possible to detect hundreds of SVs that are missed in high-coverage short-read sequencing data.
Michael Lutz, from the Duke University Medical Center, discussed a recently published software tool that can now be used in a pipeline with SMRT Sequencing data to find structural variant biomarkers for neurodegenerative diseases with a focus on Alzheimer’s disease, ALS, and Lewy body dementia. His team is particularly interested in short sequence repeats and short tandem repeats, which have already been implicated in neurodegenerative disease.