Menu
April 21, 2020  |  

Characterization of an NDM-5 carbapenemase-producing Escherichia coli ST156 isolate from a poultry farm in Zhejiang, China.

The emergence of carbapenem-resistant Enterobacteriaceae strains has posed a severe threat to public health in recent years. The mobile elements carrying the New Delhi metallo-ß-lactqtamase (NDM) gene have been regarded as the major mechanism leading to the rapid increase of carbapenem-resistant Enterobacteriaceae strains isolated from clinics and animals.We describe an NDM-5-producing Escherichia coli strain, ECCRA-119 (sequence type 156 [ST156]), isolated from a poultry farm in Zhejiang, China. ECCRA-119 is a multidrug-resistant (MDR) isolate that exhibited resistance to 27 antimicrobial compounds, including imipenem and meropenem, as detected by antimicrobial susceptibility testing (AST). The complete genome sequence of the ECCRA-119 isolate was also obtained using the PacBio RS II platform. Eleven acquired resistance genes were identified in the chromosome; four were detected in plasmid pTB201, while six were detected in plasmid pTB202. Importantly, the carbapenem-resistant gene blaNDM-5 was detected in the IncX3 plasmid pTB203. In addition, seven virulence genes and one metal-resistance gene were also detected. The results of conjugation experiments and the transfer regions identification indicated that the blaNDM-5-harboring plasmid pTB203 could be transferred between E. coli strains.The results reflected the severe bacterial resistance in a poultry farm in Zhejiang province and increased our understanding of the presence and transmission of the blaNDM-5 gene.


April 21, 2020  |  

Genome plasticity favours double chromosomal Tn4401b-blaKPC-2 transposon insertion in the Pseudomonas aeruginosa ST235 clone.

Pseudomonas aeruginosa Sequence Type 235 is a clone that possesses an extraordinary ability to acquire mobile genetic elements and has been associated with the spread of resistance genes, including genes that encode for carbapenemases. Here, we aim to characterize the genetic platforms involved in resistance dissemination in blaKPC-2-positive P. aeruginosa ST235 in Colombia.In a prospective surveillance study of infections in adult patients attended in five ICUs in five distant cities in Colombia, 58 isolates of P. aeruginosa were recovered, of which, 27 (46.6%) were resistant to carbapenems. The molecular analysis showed that 6 (22.2%) and 4 (14.8%) isolates harboured the blaVIM and blaKPC-2 genes, respectively. The four blaKPC-2-positive isolates showed a similar PFGE pulsotype and belonged to ST235. Complete genome sequencing of a representative ST235 isolate shows a unique chromosomal contig of 7097.241?bp with eight different resistance genes identified and five transposons: a Tn6162-like with ant(2?)-Ia, two Tn402-like with ant(3?)-Ia and blaOXA-2 and two Tn4401b with blaKPC-2. All transposons were inserted into the genomic islands. Interestingly, the two Tn4401b copies harbouring blaKPC-2 were adjacently inserted into a new genomic island (PAGI-17) with traces of a replicative transposition process. This double insertion was probably driven by several structural changes within the chromosomal region containing PAGI-17 in the ST235 background.This is the first report of a double Tn4401b chromosomal insertion in P. aeruginosa, just within a new genomic island (PAGI-17). This finding indicates once again the great genomic plasticity of this microorganism.


April 21, 2020  |  

Comparative genomic and phylogenetic analyses of Populus section Leuce using complete chloroplast genome sequences

Species of Populus section Leuce are distributed throughout most parts of the Northern Hemisphere and have important economic and ecological significance. However, due to frequent hybridization within Leuce, the phylogenetic relationship between species has not been clarified. The chloroplast (cp) genome is characterized by maternal inheritance and relatively conservative mutation rates; thus, it is a powerful tool for building phylogenetic trees. In this study, we used the PacBio SEQUEL software to determine that the cp genome of Populus tomentosa has a length of 156,558 bp including a long single-copy region (84,717 bp), a small single-copy region (16,555 bp), and a pair of inverted repeat regions (27,643 bp). The cp genome contains 131 unique genes, including 37 transfer RNAs, 8 ribosomal RNAs, and 86 protein-coding genes. We compared the cp genomes of seven species of section Leuce and identified five cp DNA markers with >?1% variable sites. Phylogenetic analyses revealed two evolutionary branches for section Leuce. The species with the closest relationship with P. tomenstosa was P. adenopoda, followed by P. alba. These cp genome data will help to determine the cp evolution of section Leuce and further elucidate the origin of P. tomentosa.


April 21, 2020  |  

Direct pathway cloning of the sodorifen biosynthetic gene cluster and recombinant generation of its product in E. coli.

Serratia plymuthica WS3236 was selected for whole genome sequencing based on preliminary genetic and chemical screening indicating the presence of multiple natural product pathways. This led to the identification of a putative sodorifen biosynthetic gene cluster (BGC). The natural product sodorifen is a volatile organic compound (VOC) with an unusual polymethylated hydrocarbon bicyclic structure (C16H26) produced by selected strains of S. plymuthica. The BGC encoding sodorifen consists of four genes, two of which (sodA, sodB) are homologs of genes encoding enzymes of the non-mevalonate pathway and are thought to enhance the amounts of available farnesyl pyrophosphate (FPP), the precursor of sodorifen. Proceeding from FPP, only two enzymes are necessary to produce sodorifen: an S-adenosyl methionine dependent methyltransferase (SodC) with additional cyclisation activity and a terpene-cyclase (SodD). Previous analysis of S. plymuthica found sodorifen production titers are generally low and vary significantly among different producer strains. This precludes studies on the still elusive biological function of this structurally and biosynthetically fascinating bacterial terpene.Sequencing and mining of the S. plymuthica WS3236 genome revealed the presence of 38 BGCs according to antiSMASH analysis, including a putative sodorifen BGC. Further genome mining for sodorifen and sodorifen-like BGCs throughout bacteria was performed using SodC and SodD as queries and identified a total of 28 sod-like gene clusters. Using direct pathway cloning (DiPaC) we intercepted the 4.6 kb candidate sodorifen BGC from S. plymuthica WS3236 (sodA-D) and transformed it into Escherichia coli BL21. Heterologous expression under the control of the tetracycline inducible PtetO promoter firmly linked this BGC to sodorifen production. By utilizing this newly established expression system, we increased the production yields by approximately 26-fold when compared to the native producer. In addition, sodorifen was easily isolated in high purity by simple head-space sampling.Genome mining of all available genomes within the NCBI and JGI IMG databases led to the identification of a wealth of sod-like pathways which may be responsible for producing a range of structurally unknown sodorifen analogs. Introduction of the S. plymuthica WS3236 sodorifen BGC into the fast-growing heterologous expression host E. coli with a very low VOC background led to a significant increase in both sodorifen product yield and purity compared to the native producer. By providing a reliable, high-level production system, this study sets the stage for future investigations of the biological role and function of sodorifen and for functionally unlocking the bioinformatically identified putative sod-like pathways.


April 21, 2020  |  

Full-length transcript sequencing and comparative transcriptomic analysis to evaluate the contribution of osmotic and ionic stress components towards salinity tolerance in the roots of cultivated alfalfa (Medicago sativa L.).

Alfalfa is the most extensively cultivated forage legume. Salinity is a major environmental factor that impacts on alfalfa’s productivity. However, little is known about the molecular mechanisms underlying alfalfa responses to salinity, especially the relative contribution of the two important components of osmotic and ionic stress.In this study, we constructed the first full-length transcriptome database for alfalfa root tips under continuous NaCl and mannitol treatments for 1, 3, 6, 12, and 24?h (three biological replicates for each time points, including the control group) via PacBio Iso-Seq. This resulted in the identification of 52,787 full-length transcripts, with an average length of 2551?bp. Global transcriptional changes in the same 33 stressed samples were then analyzed via BGISEQ-500 RNA-Seq. Totals of 8861 NaCl-regulated and 8016 mannitol-regulated differentially expressed genes (DEGs) were identified. Metabolic analyses revealed that these DEGs overlapped or diverged in the cascades of molecular networks involved in signal perception, signal transduction, transcriptional regulation, and antioxidative defense. Notably, several well characterized signalling pathways, such as CDPK, MAPK, CIPK, and PYL-PP2C-SnRK2, were shown to be involved in osmotic stress, while the SOS core pathway was activated by ionic stress. Moreover, the physiological shifts of catalase and peroxidase activity, glutathione and proline content were in accordance with dynamic transcript profiles of the relevant genes, indicating that antioxidative defense system plays critical roles in response to salinity stress.Overall, our study provides evidence that the response to salinity stress in alfalfa includes both osmotic and ionic components. The key osmotic and ionic stress-related genes are candidates for future studies as potential targets to improve resistance to salinity stress via genetic engineering.


April 21, 2020  |  

Horizontal transfer of a retrotransposon between parasitic nematodes and the common shrew.

As the genomes of more metazoan species are sequenced, reports of horizontal transposon transfers (HTT) have increased. Our understanding of the mechanisms of such events is at an early stage. The close physical relationship between a parasite and its host could facilitate horizontal transfer. To date, two studies have identified horizontal transfer of RTEs, a class of retrotransposable elements, involving parasites: ticks might act as vector for BovB between ruminants and squamates, and AviRTE was transferred between birds and parasitic nematodes.We searched for RTEs shared between nematode and mammalian genomes. Given their physical proximity, it was necessary to detect and remove sequence contamination from the genome datasets, which would otherwise distort the signal of horizontal transfer. We developed an approach that is based on reads instead of genomic sequences to reliably detect contamination. From comparison of 43 RTEs across 197 genomes, we identified a single putative case of horizontal transfer: we detected RTE1_Sar from Sorex araneus, the common shrew, in parasitic nematodes. From the taxonomic distribution and evolutionary analysis, we show that RTE1_Sar was horizontally transferred.We identified a new horizontal RTE transfer in host-parasite interactions, which suggests that it is not uncommon. Further, we present and provide the workflow a read-based method to distinguish between contamination and horizontal transfer.


April 21, 2020  |  

Genome sequence and transcriptomic profiles of a marine bacterium, Pseudoalteromonas agarivorans Hao 2018.

Members of the marine genus Pseudoalteromonas have attracted great interest because of their ability to produce a large number of biologically active substances. Here, we report the complete genome sequence of Pseudoalteromonas agarivorans Hao 2018, a strain isolated from an abalone breeding environment, using second-generation Illumina and third-generation PacBio sequencing technologies. Illumina sequencing offers high quality and short reads, while PacBio technology generates long reads. The scaffolds of the two platforms were assembled to yield a complete genome sequence that included two circular chromosomes and one circular plasmid. Transcriptomic data for Pseudoalteromonas were not available. We therefore collected comprehensive RNA-seq data using Illumina sequencing technology from a fermentation culture of P. agarivorans Hao 2018. Researchers studying the evolution, environmental adaptations and biotechnological applications of Pseudoalteromonas may benefit from our genomic and transcriptomic data to analyze the function and expression of genes of interest.


April 21, 2020  |  

Comprehensive analysis of full genome sequence and Bd-milRNA/target mRNAs to discover the mechanism of hypovirulence in Botryosphaeria dothidea strains on pear infection with BdCV1 and BdPV1

Pear ring rot disease, mainly caused by Botryosphaeria dothidea, is widespread in most pear and apple-growing regions. Mycoviruses are used for biocontrol, especially in fruit tree disease. BdCV1 (Botryosphaeria dothidea chrysovirus 1) and BdPV1 (Botryosphaeria dothidea partitivirus 1) influence the biological characteristics of B. dothidea strains. BdCV1 is a potential candidate for the control of fungal disease. Therefore, it is vital to explore interactions between B. dothidea and mycovirus to clarify the pathogenic mechanisms of B. dothidea and hypovirulence of B. dothidea in pear. A high-quality full-length genome sequence of the B. dothidea LW-Hubei isolate was obtained using Single Molecule Real-Time sequencing. It has high repeat sequence with 9.3% and DNA methylation existence in the genome. The 46.34?Mb genomes contained 14,091 predicted genes, which of 13,135 were annotated. B. dothidea was predicted to express 3833 secreted proteins. In bioinformatics analysis, 351 CAZy members, 552 transporters, 128 kinases, and 1096 proteins associated with plant-host interaction (PHI) were identified. RNA-silencing components including two endoribonuclease Dicer, four argonaute (Ago) and three RNA-dependent RNA polymerase (RdRp) molecules were identified and expressed in response to mycovirus infection. Horizontal transfer of the LW-C and LW-P strains indicated that BdCV1 induced host gene silencing in LW-C to suppress BdPV1 transmission. To investigate the role of RNA-silencing in B. dothidea defense, we constructed four small RNA libraries and sequenced B. dothidea micro-like RNAs (Bd-milRNAs) produced in response to BdCV1 and BdPV1 infection. Among these, 167 conserved and 68 candidate novel Bd-milRNAs were identified, of which 161 conserved and 20 novel Bd-milRNA were differentially expressed. WEGO analysis revealed involvement of the differentially expressed Bd-milRNA-targeted genes in metabolic process, catalytic activity, cell process and response to stress or stimulus. BdCV1 had a greater effect on the phenotype, virulence, conidiomata, vertical and horizontal transmission ability, and mycelia cellular structure biological characteristics of B. dothidea strains than BdPV1 and virus-free strains. The results obtained in this study indicate that mycovirus regulates biological processes in B. dothidea through the combined interaction of antiviral defense mediated by RNA-silencing and milRNA-mediated regulation of target gene mRNA expression.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.