fbpx
X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Tuesday, June 1, 2021

Phased full-length SMRT Sequencing of HLA DPB1

Aim: In contrast to exon-based HLA-typing approaches, whole gene genotyping crucially depends on full-length sequences submitted to the IMGT/HLA Database. Currently, full-length sequences are provided for only 7 out of 520 HLA-DPB1 alleles. Therefore, we developed a fully phased whole-gene sequencing approach for DPB1, to facilitate further exploration of the allelic structure at this locus. Methods: Primers were developed flanking the UTR-regions of DPB1 resulting in a 12 kb amplicon. Using a 4-primer approach, secondary primers containing barcodes were combined with the gene-specific primers to obtain barcoded full-gene amplicons in a single amplification step. Amplicons were pooled, purified, and ligated…

Read More »

Tuesday, June 1, 2021

Access full spectrum of polymorphisms in HLA class I & II genes, without imputation for disease association and evolutionary research.

MHC class I and II genes are critically monitored by high-resolution sequencing for organ transplant decisions due to their role in GVHD. Their direct or linkage-based causal association, have increased their prominence as targets for drug sensitivity, autoimmune, cancer and infectious disease research. Monitoring HLA genes can however be tricky due to their highly polymorphic nature. Allele-level resolution is thus strongly preferred. However, most studies were historically focused on peptide binding domains of the HLA genes, due to technological challenges. As a result knowledge about the functional role of polymorphisms outside of exons 2 and 3 of HLA genes was…

Read More »

Tuesday, June 1, 2021

HLA variant identification techniques

The Human Leukocyte Antigen (HLA) genes located on chromosome 6 are responsible for regulating immune function via antigen presentation and are one of the determining factors for stem cell and organ transplantation compatibility. Additionally various alleles within this region have been implicated in autoimmune disorders, cancer, vaccine response and both non-infectious and infectious disease risk. The HLA region is highly variable; containing repetitive regions; and co-dominantly expressed genes. This complicates short read mapping and means that assessing the effect of variation within a gene requires full phase information to resolve haplotypes.One solution to the problem of HLA identification is the…

Read More »

Tuesday, June 1, 2021

Profiling metagenomic communities using circular consensus and Single Molecule, Real-Time Sequencing

There are many sequencing-based approaches to understanding complex metagenomic communities, spanning targeted amplification to whole-sample shotgun sequencing. While targeted approaches provide valuable data at low sequencing depth, they are limited by primer design and PCR amplification. Whole-sample shotgun experiments require a high depth of coverage. As such, rare community members may not be represented in the resulting assembly. Circular-consensus, Single Molecule, Real-Time (SMRT) Sequencing reads in the 1-2 kb range, with >99% consensus accuracy, can be efficiently generated for low amounts of input DNA, e.g. as little as 10 ng of input DNA sequenced in 4 SMRT Cells can generate…

Read More »

Tuesday, June 1, 2021

How to Compare and Cluster Every Known Genome in about an Hour

Given a massive collection of sequences, it is infeasible to perform pairwise alignment for basic tasks like sequence clustering and search. To address this problem, we demonstrate that the MinHash technique, first applied to clustering web pages, can be applied to biological sequences with similar effect, and extend this idea to include biologically relevant distance and significance measures. Our new tool, Mash, uses MinHash locality-sensitive hashing to reduce large sequences to a representative sketch and rapidly estimate pairwise distances between genomes or metagenomes. Using Mash, we explored several use cases, including a 5,000-fold size reduction and clustering of all 55,000…

Read More »

Tuesday, June 1, 2021

Profiling the microbiome in fecal microbiota transplantation using circular consensus and Single Molecule, Real-Time Sequencing

There are many sequencing-based approaches to understanding complex metagenomic communities spanning targeted amplification to whole-sample shotgun sequencing. While targeted approaches provide valuable data at low sequencing depth, they are limited by primer design and PCR. Whole-sample shotgun experiments generally use short-read sequencing, which results in data processing difficulties. For example, reads less than 500bp in length will rarely cover a complete gene or region of interest, and will require assembly. This not only introduces the possibility of incorrectly combining sequence from different community members, it requires a high depth of coverage. As such, rare community members may not be represented…

Read More »

Tuesday, June 1, 2021

Low-input long-read sequencing for complete microbial genomes and metagenomic community analysis

Microbial genome sequencing can be done quickly, easily, and efficiently with the PacBio sequencing instruments, resulting in complete de novo assemblies. Alternative protocols have been developed to reduce the amount of purified DNA required for SMRT Sequencing, to broaden applicability to lower-abundance samples. If 50-100 ng of microbial DNA is available, a 10-20 kb SMRTbell library can be made. The resulting library can be loaded onto multiple SMRT Cells, yielding more than enough data for complete assembly of microbial genomes using the SMRT Portal assembly program HGAP, plus base modification analysis. The entire process can be done in less than…

Read More »

Tuesday, June 1, 2021

Immune regions are no longer incomprehensible with SMRT Sequencing

The complex immune regions of the genome, including MHC and KIR, contain large copy number variants (CNVs), a high density of genes, hyper-polymorphic gene alleles, and conserved extended haplotypes (CEH) with enormous linkage disequilibrium (LDs). This level of complexity and inherent biases of short-read sequencing make it challenging for extracting immune region haplotype information from reference-reliant, shotgun sequencing and GWAS methods. As NGS based genome and exome sequencing and SNP arrays have become a routine for population studies, numerous efforts are being made for developing software to extract and or impute the immune gene information from these datasets. Despite these…

Read More »

Tuesday, June 1, 2021

Resolving KIR genotypes and haplotypes simultaneously using Single Molecule, Real-Time Sequencing

The killer immunoglobulin-like receptors (KIR) genes belong to the immunoglobulin superfamily and are widely studied due to the critical role they play in coordinating the innate immune response to infection and disease. Highly accurate, contiguous, long reads, like those generated by SMRT Sequencing, when combined with target-enrichment protocols, provide a straightforward strategy for generating complete de novo assembled KIR haplotypes. We have explored two different methods to capture the KIR region; one applying the use of fosmid clones and one using Nimblegen capture.

Read More »

Tuesday, June 1, 2021

Workflow for processing high-throughput, Single Molecule, Real-Time Sequencing data for analyzing the microbiome of patients undergoing fecal microbiota transplantation

There are many sequencing-based approaches to understanding complex metagenomic communities spanning targeted amplification to whole-sample shotgun sequencing. While targeted approaches provide valuable data at low sequencing depth, they are limited by primer design and PCR. Whole-sample shotgun experiments generally use short-read sequencing, which results in data processing difficulties. For example, reads less than 500 bp in length will rarely cover a complete gene or region of interest, and will require assembly. This not only introduces the possibility of incorrectly combining sequence from different community members, it requires a high depth of coverage. As such, rare community members may not be…

Read More »

Tuesday, June 1, 2021

Whole gene sequencing of KIR-3DL1 with SMRT Sequencing and the distribution of allelic variants in different ethnic groups

The killer-cell immunoglobulin-like receptor (KIR) gene family are involved in immune modulation during viral infection, autoimmune disease and in allogeneic stem cell transplantation. Most KIR gene diversity studies and their impact on the transplant outcome is performed by gene absence/presence assays. However, it is well known that KIR gene allelic variations have biological significance. Allele level typing of KIR genes has been very challenging until recently due to the homologous nature of those genes and very long intronic sequences. SMRT (Single Molecule Real-Time) Sequencing generates average long reads of 10 to 15 kb and allows us to obtain in-phase long…

Read More »

Tuesday, June 1, 2021

Characterizing haplotype diversity at the immunoglobulin heavy chain locus across human populations using novel long-read sequencing and assembly approaches

The human immunoglobulin heavy chain locus (IGH) remains among the most understudied regions of the human genome. Recent efforts have shown that haplotype diversity within IGH is elevated and exhibits population specific patterns; for example, our re-sequencing of the locus from only a single chromosome uncovered >100 Kb of novel sequence, including descriptions of six novel alleles, and four previously unmapped genes. Historically, this complex locus architecture has hindered the characterization of IGH germline single nucleotide, copy number, and structural variants (SNVs; CNVs; SVs), and as a result, there remains little known about the role of IGH polymorphisms in inter-individual…

Read More »

Tuesday, June 1, 2021

The MHC Diversity in Africa Project (MDAP) pilot – 125 African high resolution HLA types from 5 populations

The major histocompatibility complex (MHC), or human leukocyte antigen (HLA) in humans, is a highly diverse gene family with a key role in immune response to disease; and has been implicated in auto-immune disease, cancer, infectious disease susceptibility, and vaccine response. It has clinical importance in the field of solid organ and bone marrow transplantation, where donors and recipient matching of HLA types is key to transplanted organ outcomes. The Sanger based typing (SBT) methods currently used in clinical practice do not capture the full diversity across this region, and require specific reference sequences to deconvolute ambiguity in HLA types.…

Read More »

Tuesday, June 1, 2021

Profiling complex population genomes with highly accurate single molecule reads: cow rumen microbiomes

Determining compositions and functional capabilities of complex populations is often challenging, especially for sequencing technologies with short reads that do not uniquely identify organisms or genes. Long-read sequencing improves the resolution of these mixed communities, but adoption for this application has been limited due to concerns about throughput, cost and accuracy. The recently introduced PacBio Sequel System generates hundreds of thousands of long and highly accurate single-molecule reads per SMRT Cell. We investigated how the Sequel System might increase understanding of metagenomic communities. In the past, focus was largely on taxonomic classification with 16S rRNA sequencing. Recent expansion to WGS…

Read More »

Tuesday, June 1, 2021

Using the PacBio IsoSeq method to search for novel colorectal cancer biomarkers

Early detection of colorectal cancer (CRC) and its precursor lesions (adenomas) is crucial to reduce mortality rates. The fecal immunochemical test (FIT) is a non-invasive CRC screening test that detects the blood-derived protein hemoglobin. However, FIT sensitivity is suboptimal especially in detection of CRC precursor lesions. As adenoma-to-carcinoma progression is accompanied by alternative splicing, tumor-specific proteins derived from alternatively spliced RNA transcripts might serve as candidate biomarkers for CRC detection.

Read More »

1 2 3 4 28

Subscribe for blog updates:

Archives