Menu
September 22, 2019  |  

Bacillus wiedmannii biovar thuringiensis: A specialized mosquitocidal pathogen with plasmids from diverse origins.

Bacillus cereus sensu lato also known as B. cereus group is composed of an ecologically diverse bacterial group with an increasing number of related species, some of which are medically or agriculturally important. Numerous e?orts have been undertaken to allow presumptive di?erentiation of B. cereus group species from one another. FCC41 is a Bacillus sp. strain toxic against mosquito species like Aedes aegypti, Aedes (Ochlerotatus) albifasciatus, Culex pipiens, Culex quinquefasciatus, and Culex apicinus, some of them responsible for the transmission of vector-borne diseases. Here, we report the complete genome sequence of FCC41 strain, which consists of one circular chromosome and eight circular plasmids ranging in size from 8 to 490?kb. This strain harbors six crystal protein genes, including cry24Ca, two cry4-like and two cry52-like, a cry41-like parasporin gene and multiple virulence factors. The phylogenetic analysis of the whole-genome sequence of this strain with molecular approaches places this strain into the Bacillus wiedmannii cluster. However, according with phenotypical characteristics such as the mosquitocidal activity due to the presence of Cry proteins found in the parasporal body and cry genes encoded in plasmids of different sizes, indicate that this strain could be renamed as B. wiedmannii biovar thuringiensis strain FCC41.


September 22, 2019  |  

Endogenous rRNA sequence variation can regulate stress response gene expression and phenotype.

Prevailing dogma holds that ribosomes are uniform in composition and function. Here, we show that nutrient limitation-induced stress in E. coli changes the relative expression of rDNA operons to alter the rRNA composition within the actively translating ribosome pool. The most upregulated operon encodes the unique 16S rRNA, rrsH, distinguished by conserved sequence variation within the small ribosomal subunit. rrsH-bearing ribosomes affect the expression of functionally coherent gene sets and alter the levels of the RpoS sigma factor, the master regulator of the general stress response. These impacts are associated with phenotypic changes in antibiotic sensitivity, biofilm formation, and cell motility and are regulated by stress response proteins, RelA and RelE, as well as the metabolic enzyme and virulence-associated protein, AdhE. These findings establish that endogenously encoded, naturally occurring rRNA sequence variation can modulate ribosome function, central aspects of gene expression regulation, and cellular physiology. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.


September 22, 2019  |  

Comparative genome analysis and evaluation of probiotic characteristics of Lactobacillus plantarum strain JDFM LP11.

In the current study, the probiotic potential of approximately 250 strains of lactic acid bacteria (LAB) isolated from piglet fecal samples were investigated; among them Lactobacillus plantarum strain JDFM LP11, which possesses significant probiotic potential, with enhanced acid/bile tolerance, attachment to porcine intestinal epithelial cells (IPEC-J2), and antimicrobial activity. The genetic characteristics of strain JDFM LP11 were explored by performing whole genome sequencing (WGS) using a PacBio system. The circular draft genome have a total length of 3,206,883 bp and a total of 3,021 coding sequences were identified. Phylogenetically, three genes, possibly related to survival and metabolic activity in the porcine host, were identified. These genes encode p60, lichenan permease IIC component, and protein TsgA, which are a putative endopeptidase, a component of the phosphotransferase system (PTS), and a major facilitator in the gut environment, respectively. Our findings suggest that understanding the functional and genetic characteristics of L. plantarum strain JDFM LP11, with its candidate genes for gut health, could provide new opportunities and insights into applications in the animal food and feed additive industries.


September 22, 2019  |  

Update on Tetracycline Susceptibility of Pediococcus acidilactici Based on Strains Isolated from Swiss Cheese and Whey.

Bacterial strains used as starter cultures in the production of fermented foods may act as reservoirs for antibiotic resistance (AbR) genes. To avoid the introduction of such genes into the food chain, the presence of acquired AbR in bacterial strains added to food must be tested. Standard protocols and microbiological cut-off values have been defined to provide practitioners with a basis for evaluating whether their bacterial isolates harbor an acquired resistance to a given antibiotic. Here, we tested the AbR of 24 strains of Pediococcus acidilactici by using the standard protocol and microbiological cut-off values recommended by the European Food Safety Authority. Phenotypic data were complemented by searching for known AbR genes using an in silico analysis of whole genomes. The majority (54.2%) of the strains were able to grow at a tetracycline concentration above the defined cut-off, even though only one strain carried a known tetracycline resistance gene, tetM. The same strain also carried the AbR gene of an erythromycin resistance methylase, ermA, and displayed resistance toward clindamycin and erythromycin. Our results bolster the scarce data on the sensitivity of P. acidilactici to tetracycline and suggest that the microbiological cut-off recommended by the European Food Safety Authority for this antibiotic should be amended.


September 22, 2019  |  

Prevalence, antimicrobial resistance and phylogenetic characterization of Yersinia enterocolitica in retail poultry meat and swine feces in parts of China

Yersinia enterocolitica is an enteropathogen transmitted by contaminated food. In this study, a total of 500 retail poultry meat samples from 4 provinces and 145 swine feces samples from 12 provinces in China was tested for Y. enterocolitica and 26 isolates were obtained for further bio-serotyping, testing with antimicrobial susceptibility testing to a panel of antimicrobial compounds, and genetically characterization based on the whole genome sequencing. Higher prevalence (4.8%) of Y. enterocolitica contamination in retail poultry meat than that in swine feces (2.76%) was observed. No difference in bio-serotypes, multilocus sequence typing (MLST) and virulence genes distribution between swine and poultry origin were found. All isolates were resistant to ampicillin, amoxicillin/clavulanic acid, and cefazolin and were multi-drug resistant (MDR). The most predominant drug-resistance profile was AMP-CFZ-AMC-FOX (42.31%). A pathogenic isolate with bio-serotype 3/O:3 and ST135 was cultured from retail fresh chicken meat for the first time in China. Based on the whole-genome single nucleotide polymorphisms (SNPs) tree analysis, pathogenic isolates clustered closely, while nonpathogenic isolates exhibited high genetic heterogeneity. These indicated that pathogenic isolates were conserved on genetic level. The whole-genome SNP tree also revealed that Y. enterocolitica of swine, chicken and duck origin may share a common ancestor. The findings highlight the emergence of drug-resistant pathogenic Y. entrocoliticas in retailed poultry meats in China.


September 22, 2019  |  

Evaluation of bacterial contamination in goat milk powder using PacBio Single Molecule Real-Time Sequencing and Droplet Digital PCR.

Goat milk powder is a nutritious and easy-to-store product that is highly favored by consumers. However, the presence of contaminating bacteria and their metabolites may significantly affect the flavor, solubility, shelf life, and safety of the product. To comprehensively and accurately understand the sanitary conditions in the goat milk powder production process and potential threats from bacterial contamination, a combination of Pacific Biosciences single molecule real-time sequencing and droplet digital PCR was used to evaluate bacterial contamination in seven goat milk powder samples from three dairies. Ten phyla, 119 genera, and 249 bacterial species were identified. Bacillus, Paenibacillus, Lactococcus, and Cronobacter were the primary genera. Bacillus cereus, Lactococcus lactis, Alkaliphilus oremlandii, and Cronobacter sakazakii were the dominant species. With droplet digital PCR, 6.3 × 104 copies per g of Bacillus cereus and 1.0 × 104 copies per g of Cronobacter spp. were quantified, which may increase the risk of food spoilage and the probability of foodborne illness and should be monitored and controlled. This study offers a new approach for evaluating bacterial contamination in goat milk powder and supplies a reference for the assessment of food safety and control of potential risk, which will be of interest to the dairy industry.


September 22, 2019  |  

Characterization of Streptococcus pluranimalium from a cattle with mastitis by whole genome sequencing and functional validation.

Streptococcus pluranimalium is a new member of the Streptococcus genus isolated from multiple different animal hosts. It has been identified as a pathogen associated with subclinical mastitis, valvular endocarditis and septicaemia in animals. Moreover, this bacterium has emerged as a new pathogen for human infective endocarditis and brain abscess. However, the patho-biological properties of S. pluranimalium remain virtually unknown. The aim of this study was to determine the complete genome sequence of S. pluranimalium strain TH11417 isolated from a cattle with mastitis, and to characterize its antimicrobial resistance, virulence, and carbon catabolism.The genome of S. pluranimalium TH11417, determined by single-molecule real-time (SMRT) sequencing, consists of 2,065,522 base pair (bp) with a G?+?C content of 38.65%, 2,007 predicted coding sequence (CDS), 58 transfer RNA (tRNA) genes and five ribosome RNA (rRNA) operons. It contains a novel ISSpl1 element (a memeber of the IS3 family) and a ?11417.1 prophage that carries the mef(A), msr(D) and lnu(C) genes. Consistently, our antimicrobial susceptibility test confirmed that S. pluranimalium TH11417 was resistant to erythromycin and lincomycin. However, this strain did not show virulence in murine pneumonia (intranasal inoculation, 107 colony forming unit – CFU) and sepsis (intraperitoneal inoculation, 107 CFU) models. Additionally, this strain is able to grow with glucose, lactose or galactose as the sole carbon source, and possesses a lactose-specific phosphoenolpyruvate-dependent phosphotransferase system (PTS).We reported the first whole genome sequence of S. pluranimalium isolated from a cattle with mastitis. It harbors a prophage carrying the mef(A), msr(D) and lnu(C) genes, and is avirulent in the murine infection model.


September 22, 2019  |  

Antibiotic-resistant indicator bacteria in irrigation water: High prevalence of extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli.

Irrigation water is a major source of fresh produce contamination with undesired microorganisms including antibiotic-resistant bacteria (ARB), and contaminated fresh produce can transfer ARB to the consumer especially when consumed raw. Nevertheless, no legal guidelines exist so far regulating quality of irrigation water with respect to ARB. We therefore examined irrigation water from major vegetable growing areas for occurrence of antibiotic-resistant indicator bacteria Escherichia coli and Enterococcus spp., including extended-spectrum ß-lactamase (ESBL)-producing E. coli and vancomycin-resistant Enterococcus spp. Occurrence of ARB strains was compared to total numbers of the respective species. We categorized water samples according to total numbers and found that categories with higher total E. coli or Enterococcus spp. numbers generally had an increased proportion of respective ARB-positive samples. We further detected high prevalence of ESBL-producing E. coli with eight positive samples of thirty-six (22%), while two presumptive vancomycin-resistant Enterococcus spp. were vancomycin-susceptible in confirmatory tests. In disk diffusion assays all ESBL-producing E. coli were multidrug-resistant (n = 21) and whole-genome sequencing of selected strains revealed a multitude of transmissible resistance genes (ARG), with blaCTX-M-1 (4 of 11) and blaCTX-M-15 (3 of 11) as the most frequent ESBL genes. Overall, the increased occurrence of indicator ARB with increased total indicator bacteria suggests that the latter might be a suitable estimate for presence of respective ARB strains. Finally, the high prevalence of ESBL-producing E. coli with transmissible ARG emphasizes the need to establish legal critical values and monitoring guidelines for ARB in irrigation water.


September 22, 2019  |  

Complete genome sequencing of Lactobacillus plantarum ZLP001, a potential probiotic that enhances intestinal epithelial barrier function and defense against pathogens in pigs.

The mammalian gastrointestinal tract is a heterogeneous ecosystem with the most abundant, and one of the most diverse, microbial communities. The gut microbiota, which may contain more than 100 times the number of genes in the human genome, endows the host with beneficial functional features, including colonization resistance, nutrient metabolism, and immune tolerance (Bäckhed, 2005). Dysbiosis of gut microbiota may result in serious adverse consequences for the host, such as neurological disorders, cancer, obesity, malnutrition, inflammatory dysregulation, and susceptibility to pathogens


September 22, 2019  |  

N6-methyladenine DNA modification in Xanthomonas oryzae pv. oryzicola genome.

DNA N6-methyladenine (6mA) modifications expand the information capacity of DNA and have long been known to exist in bacterial genomes. Xanthomonas oryzae pv. Oryzicola (Xoc) is the causative agent of bacterial leaf streak, an emerging and destructive disease in rice worldwide. However, the genome-wide distribution patterns and potential functions of 6mA in Xoc are largely unknown. In this study, we analyzed the levels and global distribution patterns of 6mA modification in genomic DNA of seven Xoc strains (BLS256, BLS279, CFBP2286, CFBP7331, CFBP7341, L8 and RS105). The 6mA modification was found to be widely distributed across the seven Xoc genomes, accounting for percent of 3.80, 3.10, 3.70, 4.20, 3.40, 2.10, and 3.10 of the total adenines in BLS256, BLS279, CFBP2286, CFBP7331, CFBP7341, L8, and RS105, respectively. Notably, more than 82% of 6mA sites were located within gene bodies in all seven strains. Two specific motifs for 6?mA modification, ARGT and AVCG, were prevalent in all seven strains. Comparison of putative DNA methylation motifs from the seven strains reveals that Xoc have a specific DNA methylation system. Furthermore, the 6?mA modification of rpfC dramatically decreased during Xoc infection indicates the important role for Xoc adaption to environment.


September 22, 2019  |  

A mcr-1-carrying conjugative IncX4 plasmid in colistin-resistant Escherichia coli ST278 strain isolated from dairy cow feces in Shanghai, China.

Enterobacteriaceae, including Escherichia coli, has been shown to acquire the colistin resistance gene mcr-1. A strain of E. coli, EC11, which is resistant to colistin, polymyxin B and trimethoprim-sulfamethoxazole, was isolated in 2016 from the feces of a dairy cow in Shanghai, China. Strain EC11 identifies with sequence type ST278 and is susceptible to 19 frequently used antibiotics. Whole genome sequencing of strain EC11 showed that this strain contains a 31-kb resistance plasmid, pEC11b, which belongs to the IncX4 group. The mcr-1 gene was shown to be inserted into a 2.6-kb mcr-1-pap2 cassette of pEC11b. Plasmid pEC11b also contained putative conjugal transfer components, including an oriT-like region, relaxase, type IV coupling protein, and type IV secretion system. We were successful in transferring pEC11b to E. coli C600 with an average transconjugation efficiency of 4.6 × 10-5. Additionally, a MLST-based analysis comparing EC11 and other reported mcr-positive E. coli populations showed high genotypic diversity. The discovery of the E. coli strain EC11 with resistance to colistin in Shanghai emphasizes the importance of vigilance in detecting new threats like mcr genes to public health. Detection of mcr genes helps in tracking, slowing, and responding to the emergence of antibiotic resistance in Chinese livestock farming.


September 22, 2019  |  

Insights into the microbiota of Asian seabass (Lates calcarifer) with tenacibaculosis symptoms and description of sp. nov. Tenacibaculum singaporense

Outbreaks of diseases in farmed fish remain a recurring problem despite the development of vaccines and improved hygiene standards on aquaculture farms. One commonly observed bacterial disease in tropical aquaculture of the South-East Asian region is tenacibaculosis, which is attributed to members of the Bacteroidetes genus Tenacibaculum, most notably T. maritimum. The impact of tenacibaculosis on fish microbiota remains poorly understood. In this study, we analysed the microbiota of different tissue types of commercially reared Asian seabass (Lates calcarifer) that showed symptoms of tenacibaculosis and compared the microbial communities to those of healthy and experimentally infected fish that were exposed to diseased farm fish. The microbiota of diseased farm fish was dominated by Proteobacteria (relative abundancetextpmstandard deviation, 74.5%textpm22.8%) and Bacteroidetes (18.07%textpm21.7%), the latter mainly comprised by a high abundance of Tenacibaculum species (17.6%textpm20.7%). In healthy seabass Proteobacteria had also highest relative abundance (48.04%textpm0.02%), but Firmicutes (34.2%textpm0.02%) and Fusobacteria (12.0%textpm0.03%) were the next two major constituents. Experimentally infected fish developed lesions characteristic for tenacibaculosis, but the microbiota was primarily dominated by Proteobacteria (90.4%textpm0.2%) and Firmicutes (6.2%textpm0.1%). The relative abundance of Tenacibaculum species in experimentally infected fish was significantly lower than in the commercially reared diseased fish and revealed a higher prevalence of different Tenacibaculum species. One strain was isolated and is described here as sp. nov. Tenacibaculum singaporense TLL-A1T (=DSM 106434T, KCTC 62393T). The genome of T. singaporense was sequenced and compared to those of T. maritimum DSM 17995T and the newly sequenced T. mesophilum DSM 13764T.


September 22, 2019  |  

Molecular characteristics and comparative genomics analysis of a clinical Enterococcus casseliflavus with a resistance plasmid.

The aim of this work was to investigate the molecular characterization of a clinical Enterococcus casseliflavus strain with a resistance plasmid.En. casseliflavus EC369 was isolated from a patient in a hospital in southern China. The minimum inhibitory concentration was found by means of the agar dilution method to determine the antimicrobial susceptibilities of the strains. Whole-genome sequencing and comparative genomics analysis were performed to analyze the mechanism of antibiotic resistance and the horizontal gene transfer of the resistance gene-related mobile genetic elements.En. casseliflavus EC369 showed resistance to erythromycin, kanamycin, and streptomycin, but was susceptible to vancomycin, ampicillin, and streptothricin and other antimicrobials. There were six resistance genes (aph3′, ant6, bla, sat4, and two ermBs) carried by a transposon identified on the plasmid pEC369 and a complete resistance gene cluster of vancomycin and a tet (M) gene encoded on the chromosome. This is the first complete plasmid sequence reported in clinically isolated En. casseliflavus. The plasmid with the greatest sequence identity with pEC369 was the plasmid of Enterococcus sp. FDAARGOS_375, followed by the plasmids of Enterococcus faecium strains F12085 and pRE25, whereas the sequence with the greatest identity to the resistance genes carrying a transposon of pEC369 was on the chromosome of Staphylococcus aureus strain GD1677.The resistance profiles of En. casseliflavus EC369 might contribute to the resistance genes encoded on the plasmid. The fact that the most similar sequence to the transposon carrying resistance genes of pEC369 was encoded in the chromosome of a S. aureus strain provides insights into the mechanism of dissemination of multidrug resistance between bacteria of different species or genera through horizontal gene transfer.


September 22, 2019  |  

Construction of stable fluorescent laboratory control strains for several food safety relevant Enterobacteriaceae.

Using naturally-occurring bacterial strains as positive controls in testing protocols is typically feared due to the risk of cross-contaminating samples. We have developed a collection of strains which express Green Fluorescent Protein (GFP) at high-level, permitting rapid screening of the following species on selective or non-selective plates: Escherichia coli O157:H7, Shigella sonnei, S. flexneri, Salmonella enterica subsp. Enterica serovar Gaminera, S. Mbandaka, S. Tennesse, S. Minnesota, S. Senftenberg and S. Typhimurium. These new strains fluoresce when irradiated with UV light and maintain this phenotype in absence of antibiotic selection. Recombinants were phenotypically equivalent to the parent strain, except for S. Tennessee Sal66 that appeared Lac- on Xylose Lysine Deoxycholate (XLD) agar plates and Lac+ on Mac Conkey and Hektoen Enteric agar plates. Analysis of closed whole genome sequences revealed that Sal66 had lost one lactose operon; slower rates of lactose metabolism may affect lactose fermentation on XLD agar. These fluorescent enteric control strains were challenging to develop and should provide an easy and effective means of identifying cross-contamination. Published by Elsevier Ltd.


September 22, 2019  |  

Complete genome sequence of Leuconostoc citreum EFEL2700, a host strain for transformation of pCB vectors.

Leuconostoc citreum is an important lactic acid bacterium used as a starter culture for producing kimchi, the traditional Korean fermented vegetables. An efficient host strain for plasmid transformation, L. citreum EFEL2700, was isolated from kimchi, and it has been frequently used for genetic engineering of L. citreum. In this study, we report the whole genome sequence of the strain and its genetic characteristics. Genome assembly yielded 5 contigs (1 chromosome and 4 plasmids), and the complete genome contained 1,923,830 base pairs (bp) with a G?+?C content of 39.0%. Average nucleotide identity analysis showed high homology (= 99%) to the reference strain L. citreum KM 20. The smallest plasmid (4.3 kbp) was used as an Escherichia coli shuttle vector (pCB) for heterologous gene expression, and L. citreum EFEL2700 showed the highest transformation efficiency, 6.7?×?104 CFU µg-1 DNA. Genetic analysis of the genome enabled the construction of primary metabolic pathway showing a typical hetero-type lactic acid fermentation. Notably, no core genes for primary metabolism were observed in plasmid 4 and it could be eliminated to create an efficient host for gene transformation. This report will facilitate the understanding and application of L. citreum EFEL2700 as a food-grade microbial cell factory.Copyright © 2018. Published by Elsevier B.V.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.