At DuPont Pioneer, DNA sequencing is paramount for R&D to reveal the genetic basis for traits of interest in commercial crops such as maize, soybean, sorghum, sunflower, alfalfa, canola, wheat, rice, and others. They cannot afford to wait the years it has historically taken for high-quality reference genomes to be produced. Nor can they rely on a single reference to represent the genetic diversity in its germplasm.
By 2050, there will be 9 billion people on the planet. What will they eat? This is the question that led Rod Wing, Director of the Arizona Genomics Institute, into the field of plant genomics. What has been accomplished so far in the mission to come up with some super green crops? And how does Rod see anti-GMO sentiment and the recent trend toward gluten free diets factoring in? After answering these questions, he dives into a discussion on which sequencing instruments he has used for plant work. Unsurprisingly, Rod prefers the PacBio long reads even though the cost is…
To make improvements to crops like corn, soybeans, and canola, scientists at Corteva are building a compendium of crop genomics resources to provide actionable sequence info for genetic discovery, gene-editing, and seed product development. Hear how Kevin Fengler, Comparative Genomics Lead of Data Science and Bioinformatics at Corteva, is using PacBio sequences to build visualization tools and genome assembly pipelines as a contribution to this effort.
In this presentation, Justin Blethrow provides an overview of recent and upcoming developments across PacBio’s SMRT Sequencing product portfolio, and their implications for PacBio’s major applications. In presenting the product roadmap, he illustrates how key new products coming in 2019 will make SMRT Sequencing dramatically more affordable and easy to use, and how they will enable customers to routinely produce highly accurate, single-molecule long reads.
In a push to develop insect-based food sources for people, Brenda Oppert from the USDA has been sequencing bug genomes with PacBio technology. Long reads are essential because of the highly repetitive sequences and large genomes. On the Sequel II System, a single SMRT Cell is sufficient to generate 350-fold coverage and produce a high-quality assembly for some of the insects she’s studying.
Understanding interactions among plants and the complex communities of organisms living on, in and around them requires more than one experimental approach. A new method for de novo metagenome assembly, PacBio HiFi sequencing, has unique strengths for determining the functional capacity of metagenomes. With HiFi sequencing, the accuracy and median read length of unassembled data outperforms the quality metrics for many existing assemblies generated with other technologies, enabling cost-competitive recovery of full-length genes and operons even from rare species. When paired with the ability to close the genomes of even challenging isolates like Xanthomonas, the PacBio Sequel II System is…
In this presentation at PAG 2020, Bart Nijland of Genetwister Technologies explains how his team set out to make a haplotype-aware assembly of the highly complex tetraploid Rosa x hybrida L. genome in order to capture its full range of genetic variation. HiFi reads generated from PacBio’s Sequel II System have made it possible to parse out critical information from many of the plant’s parental genes.
In this webinar you will hear how several researchers have overcome the challenges of sequencing organisms with small body size using the new low and ultra-low DNA input methods from PacBio. Learn about the advantages of using highly accurate long reads (HiFi reads) to sequence and de novo assemble genomes of single individuals.
Genomics studies have shown that the insertions, deletions, duplications, translocations, inversions, and tandem repeat expansions in the structural variant (SV) size range (>50 bp) contribute to the evolution of traits and often have significant associations with agronomically important phenotypes. However, most SVs are too small to detect with array comparative genomic hybridization and too large to reliably discover with short-read DNA sequencing. While de novo assembly is the most comprehensive way to identify variants in a genome, recent studies in human genomes show that PacBio SMRT Sequencing sensitively detects structural variants at low coverage. Here we present SV characterization in…
Drought is responsible for much of the global losses in crop yields and understanding how plants naturally cope with drought stress is essential for breeding and engineering crops for the changing climate. Resurrection plants desiccate to complete dryness during times of drought, then “come back to life” once water is available making them an excellent model for studying drought tolerance. Understanding the molecular networks governing how resurrection plants handle desiccation will provide targets for crop engineering. Oropetium thomaeum (Oro) is a resurrection plant that also has the smallest known grass genome at 250 Mb compared to Brachypodium distachyon (300 Mb)…
AGBT 2013 Presentation Slides: Cold Spring Harbor Laboratory’s Michael Schatz presented strategies for de novo assembly of crop genomes with PacBio technolgy.
PacBio 2015 User Group Meeting Presentation Slides: Ken Naito of the NIAS Genetic Resource Center presented on whole genome sequencing of the azuki bean (Vigna angularis). Using single molecule real-time (SMRT) sequencing technology, they achieved the best contiguity and coverage among currently assembled legume crops.
Structural variants (genomic differences =50 base pairs) contribute to the evolution of traits and disease. Most structural variants (SVs) are too small to detect with array comparative genomic hybridization and too large to reliably discover with short-read DNA sequencing.
Maize is an amazingly diverse crop. A study in 20051 demonstrated that half of the genome sequence and one-third of the gene content between two inbred lines of maize were not shared. This diversity, which is more than two orders of magnitude larger than the diversity found between humans and chimpanzees, highlights the inability of a single reference genome to represent the full pan-genome of maize and all its variants. Here we present and review several efforts to characterize the complete diversity within maize using the highly accurate long reads of PacBio Single Molecule, Real-Time (SMRT) Sequencing. These methods provide…
Domestication of clonally propagated crops such as pineapple from South America was hypothesized to be a ‘one-step operation’. We sequenced the genome of Ananas comosus var. bracteatus CB5 and assembled 513?Mb into 25 chromosomes with 29,412 genes. Comparison of the genomes of CB5, F153 and MD2 elucidated the genomic basis of fiber production, color formation, sugar accumulation and fruit maturation. We also resequenced 89 Ananas genomes. Cultivars ‘Smooth Cayenne’ and ‘Queen’ exhibited ancient and recent admixture, while ‘Singapore Spanish’ supported a one-step operation of domestication. We identified 25 selective sweeps, including a strong sweep containing a pair of tandemly duplicated…