X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Wednesday, February 26, 2020

SMRT Sequencing solutions for plant genomes and transcriptomes

Single Molecule, Real-Time (SMRT) Sequencing provides efficient, streamlined solutions to address new frontiers in plant genomes and transcriptomes. Inherent challenges presented by highly repetitive, low-complexity regions and duplication events are directly addressed with multi- kilobase read lengths exceeding 8.5 kb on average, with many exceeding 20 kb. Differentiating between transcript isoforms that are difficult to resolve with short-read technologies is also now possible. We present solutions available for both reference genome and transcriptome research that best leverage long reads in several plant projects including algae, Arabidopsis, rice, and spinach using only the PacBio platform. Benefits for these applications are further…

Read More »

Wednesday, February 26, 2020

SMRT Sequencing solutions for investigative studies to understand evolutionary processes.

Single Molecule, Real-Time (SMRT) Sequencing holds promise for addressing new frontiers to understand molecular mechanisms in evolution and gain insight into adaptive strategies. With read lengths exceeding 10 kb, we are able to sequence high-quality, closed microbial genomes with associated plasmids, and investigate large genome complexities, such as long, highly repetitive, low-complexity regions and multiple tandem-duplication events. Improved genome quality, observed at 99.9999% (QV60) consensus accuracy, and significant reduction of gap regions in reference genomes (up to and beyond 50%) allow researchers to better understand coding sequences with high confidence, investigate potential regulatory mechanisms in noncoding regions, and make inferences…

Read More »

Wednesday, February 26, 2020

Whole genome sequencing and epigenome characterization of cancer cells using the PacBio platform.

The comprehensive characterization of cancer genomes and epigenomes for understanding drug resistance remains an important challenge in the field of oncology. For example, PC-9, a non-small cell lung cancer (NSCL) cell line, contains a deletion mutation in exon 19 (DelE746A750) of EGRF that renders it sensitive to erlotinib, an EGFR inhibitor. However, sustained treatment of these cells with erlotinib leads to drug-tolerant cell populations that grow in the presence of erlotinib. However, the resistant cells can be resensitized to erlotinib upon treatment with methyltransferase inhibitors, suggesting a role of epigenetic modification in development of drug resistance. We have characterized for…

Read More »

Wednesday, February 26, 2020

A comparison of 454 GS FLX Ti and PacBio RS in the context of characterizing HIV-1 intra-host diversity.

PacBio 2013 User Group Meeting Presentation Slides: Lance Hepler from UC San Diego’s Center for AIDS Research used the PacBio RS to study intra-host diversity in HIV-1. He compared PacBio’s performance to that of 454® sequencer, the platform he and his team previously used. Hepler noted that in general, there was strong agreement between the platforms; where results differed, he said that PacBio data had significantly better reproducibility and accuracy. “PacBio does not suffer from local coverage loss post-processing, whereas 454 has homopolymer problems,” he noted. Hepler said they are moving away from using 454 in favor of the PacBio…

Read More »

Wednesday, February 26, 2020

Comprehensive genome and transcriptome structural analysis of a breast cancer cell line using PacBio long read sequencing

Genomic instability is one of the hallmarks of cancer, leading to widespread copy number variations, chromosomal fusions, and other structural variations. The breast cancer cell line SK-BR-3 is an important model for HER2+ breast cancers, which are among the most aggressive forms of the disease and affect one in five cases. Through short read sequencing, copy number arrays, and other technologies, the genome of SK-BR-3 is known to be highly rearranged with many copy number variations, including an approximately twenty-fold amplification of the HER2 oncogene. However, these technologies cannot precisely characterize the nature and context of the identified genomic events…

Read More »

Wednesday, February 26, 2020

Immune regions are no longer incomprehensible with SMRT Sequencing

The complex immune regions of the genome, including MHC and KIR, contain large copy number variants (CNVs), a high density of genes, hyper-polymorphic gene alleles, and conserved extended haplotypes (CEH) with enormous linkage disequilibrium (LDs). This level of complexity and inherent biases of short-read sequencing make it challenging for extracting immune region haplotype information from reference-reliant, shotgun sequencing and GWAS methods. As NGS based genome and exome sequencing and SNP arrays have become a routine for population studies, numerous efforts are being made for developing software to extract and or impute the immune gene information from these datasets. Despite these…

Read More »

Wednesday, February 26, 2020

Improving the goat long-read assembly with optical mapping and Hi-C scaffolding

Reference genome assemblies provide important context in genetics by standardizing the order of genes and providing a universal set of coordinates for individual nucleotides. Often due to the high complexity of genic regions and higher copy number of genes involved in immune function, immunity-related genes are often misassembled in current reference assemblies. This problem is particularly ubiquitous in the reference genomes of non-model organisms as they often do not receive the years of curation necessary to resolve annotation and assembly errors. In this study, we reassemble a reference genome of the goat (Capra hircus) using modern PacBio technology in tandem…

Read More »

Wednesday, February 26, 2020

Multiplex target enrichment using barcoded multi-kilobase fragments and probe-based capture technologies

Target enrichment capture methods allow scientists to rapidly interrogate important genomic regions of interest for variant discovery, including SNPs, gene isoforms, and structural variation. Custom targeted sequencing panels are important for characterizing heterogeneous, complex diseases and uncovering the genetic basis of inherited traits with more uniform coverage when compared to PCR-based strategies. With the increasing availability of high-quality reference genomes, customized gene panels are readily designed with high specificity to capture genomic regions of interest, thus enabling scientists to expand their research scope from a single individual to larger cohort studies or population-wide investigations. Coupled with PacBio® long-read sequencing, these…

Read More »

Wednesday, February 26, 2020

Characterizing haplotype diversity at the immunoglobulin heavy chain locus across human populations using novel long-read sequencing and assembly approaches

The human immunoglobulin heavy chain locus (IGH) remains among the most understudied regions of the human genome. Recent efforts have shown that haplotype diversity within IGH is elevated and exhibits population specific patterns; for example, our re-sequencing of the locus from only a single chromosome uncovered >100 Kb of novel sequence, including descriptions of six novel alleles, and four previously unmapped genes. Historically, this complex locus architecture has hindered the characterization of IGH germline single nucleotide, copy number, and structural variants (SNVs; CNVs; SVs), and as a result, there remains little known about the role of IGH polymorphisms in inter-individual…

Read More »

Monday, January 23, 2017

Tutorial: HGAP4 de novo assembly application

This tutorial provides an overview of the Hierarchical Genome Assembly Process (HGAP4) de novo assembly analysis application. HGAP4 generates accurate de novo assemblies using only PacBio data. HGAP4 is suitable for assembling a wide range of genome sizes and complexity. HGAP4 now includes some support for diploid-aware assembly.

Read More »

1 10 11 12

Subscribe for blog updates:

Archives