fbpx
X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Sunday, September 22, 2019

Comparative genomics of bdelloid rotifers: Insights from desiccating and nondesiccating species.

Bdelloid rotifers are a class of microscopic invertebrates that have existed for millions of years apparently without sex or meiosis. They inhabit a variety of temporary and permanent freshwater habitats globally, and many species are remarkably tolerant of desiccation. Bdelloids offer an opportunity to better understand the evolution of sex and recombination, but previous work has emphasised desiccation as the cause of several unusual genomic features in this group. Here, we present high-quality whole-genome sequences of 3 bdelloid species: Rotaria macrura and R. magnacalcarata, which are both desiccation intolerant, and Adineta ricciae, which is desiccation tolerant. In combination with the…

Read More »

Sunday, September 22, 2019

The antibody loci of the domestic goat (Capra hircus).

The domestic goat (Capra hircus) is an important ruminant species both as a source of antibody-based reagents for research and biomedical applications and as an economically important animal for agriculture, particularly for developing nations that maintain most of the global goat population. Characterization of the loci encoding the goat immune repertoire would be highly beneficial for both vaccine and immune reagent development. However, in goat and other species whose reference genomes were generated using short-read sequencing technologies, the immune loci are poorly assembled as a result of their repetitive nature. Our recent construction of a long-read goat genome assembly (ARS1)…

Read More »

Sunday, September 22, 2019

Double insertion of transposable elements provides a substrate for the evolution of satellite DNA.

Eukaryotic genomes are replete with repeated sequences in the form of transposable elements (TEs) dispersed across the genome or as satellite arrays, large stretches of tandemly repeated sequences. Many satellites clearly originated as TEs, but it is unclear how mobile genetic parasites can transform into megabase-sized tandem arrays. Comprehensive population genomic sampling is needed to determine the frequency and generative mechanisms of tandem TEs, at all stages from their initial formation to their subsequent expansion and maintenance as satellites. The best available population resources, short-read DNA sequences, are often considered to be of limited utility for analyzing repetitive DNA due…

Read More »

Sunday, September 22, 2019

Characterization of phenotypic variation and genome aberrations observed among Phytophthora ramorum isolates from diverse hosts.

Accumulating evidence suggests that genome plasticity allows filamentous plant pathogens to adapt to changing environments. Recently, the generalist plant pathogen Phytophthora ramorum has been documented to undergo irreversible phenotypic alterations accompanied by chromosomal aberrations when infecting trunks of mature oak trees (genus Quercus). In contrast, genomes and phenotypes of the pathogen derived from the foliage of California bay (Umbellularia californica) are usually stable. We define this phenomenon as host-induced phenotypic diversification (HIPD). P. ramorum also causes a severe foliar blight in some ornamental plants such as Rhododendron spp. and Viburnum spp., and isolates from these hosts occasionally show phenotypes resembling…

Read More »

Sunday, September 22, 2019

NextSV: a meta-caller for structural variants from low-coverage long-read sequencing data.

Structural variants (SVs) in human genomes are implicated in a variety of human diseases. Long-read sequencing delivers much longer read lengths than short-read sequencing and may greatly improve SV detection. However, due to the relatively high cost of long-read sequencing, it is unclear what coverage is needed and how to optimally use the aligners and SV callers.In this study, we developed NextSV, a meta-caller to perform SV calling from low coverage long-read sequencing data. NextSV integrates three aligners and three SV callers and generates two integrated call sets (sensitive/stringent) for different analysis purposes. We evaluated SV calling performance of NextSV…

Read More »

Sunday, September 22, 2019

Phenotypic diversification by enhanced genome restructuring after induction of multiple DNA double-strand breaks.

DNA double-strand break (DSB)-mediated genome rearrangements are assumed to provide diverse raw genetic materials enabling accelerated adaptive evolution; however, it remains unclear about the consequences of massive simultaneous DSB formation in cells and their resulting phenotypic impact. Here, we establish an artificial genome-restructuring technology by conditionally introducing multiple genomic DSBs in vivo using a temperature-dependent endonuclease TaqI. Application in yeast and Arabidopsis thaliana generates strains with phenotypes, including improved ethanol production from xylose at higher temperature and increased plant biomass, that are stably inherited to offspring after multiple passages. High-throughput genome resequencing revealed that these strains harbor diverse rearrangements, including copy…

Read More »

Sunday, September 22, 2019

Genomes of all known members of a Plasmodium subgenus reveal paths to virulent human malaria.

Plasmodium falciparum, the most virulent agent of human malaria, shares a recent common ancestor with the gorilla parasite Plasmodium praefalciparum. Little is known about the other gorilla- and chimpanzee-infecting species in the same (Laverania) subgenus as P. falciparum, but none of them are capable of establishing repeated infection and transmission in humans. To elucidate underlying mechanisms and the evolutionary history of this subgenus, we have generated multiple genomes from all known Laverania species. The completeness of our dataset allows us to conclude that interspecific gene transfers, as well as convergent evolution, were important in the evolution of these species. Striking…

Read More »

Sunday, September 22, 2019

In vitro DNA SCRaMbLE.

The power of synthetic biology has enabled the expression of heterologous pathways in cells, as well as genome-scale synthesis projects. The complexity of biological networks makes rational de novo design a grand challenge. Introducing features that confer genetic flexibility is a powerful strategy for downstream engineering. Here we develop an in vitro method of DNA library construction based on structural variation to accomplish this goal. The “in vitro SCRaMbLE system” uses Cre recombinase mixed in a test tube with purified DNA encoding multiple loxPsym sites. Using a ß-carotene pathway designed for expression in yeast as an example, we demonstrate top-down…

Read More »

Sunday, September 22, 2019

Nucleotide-binding resistance gene signatures in sugar beet, insights from a new reference genome.

Nucleotide-binding (NB-ARC), leucine-rich-repeat genes (NLRs) account for 60.8% of resistance (R) genes molecularly characterized from plants. NLRs exist as large gene families prone to tandem duplication and transposition, with high sequence diversity among crops and their wild relatives. This diversity can be a source of new disease resistance, but difficulty in distinguishing specific sequences from homologous gene family members hinders characterization of resistance for improving crop varieties. Current genome sequencing and assembly technologies, especially those using long-read sequencing, are improving resolution of repeat-rich genomic regions and clarifying locations of duplicated genes, such as NLRs. Using the conserved NB-ARC domain as…

Read More »

Sunday, September 22, 2019

Signatures of host specialization and a recent transposable element burst in the dynamic one-speed genome of the fungal barley powdery mildew pathogen.

Powdery mildews are biotrophic pathogenic fungi infecting a number of economically important plants. The grass powdery mildew, Blumeria graminis, has become a model organism to study host specialization of obligate biotrophic fungal pathogens. We resolved the large-scale genomic architecture of B. graminis forma specialis hordei (Bgh) to explore the potential influence of its genome organization on the co-evolutionary process with its host plant, barley (Hordeum vulgare).The near-chromosome level assemblies of the Bgh reference isolate DH14 and one of the most diversified isolates, RACE1, enabled a comparative analysis of these haploid genomes, which are highly enriched with transposable elements (TEs). We…

Read More »

Sunday, September 22, 2019

Gene duplication and evolution dynamics in the homeologous regions harboring multiple prolamin and resistance gene families in hexaploid wheat.

Improving end-use quality and disease resistance are important goals in wheat breeding. The genetic loci controlling these traits are highly complex, consisting of large families of prolamin and resistance genes with members present in all three homeologous A, B, and D genomes in hexaploid bread wheat. Here, orthologous regions harboring both prolamin and resistance gene loci were reconstructed and compared to understand gene duplication and evolution in different wheat genomes. Comparison of the two orthologous D regions from the hexaploid wheat Chinese Spring and the diploid progenitor Aegilops tauschii revealed their considerable difference due to the presence of five large…

Read More »

Sunday, September 22, 2019

The African Bullfrog (Pyxicephalus adspersus) genome unites the two ancestral ingredients for making vertebrate sex chromosomes

Heteromorphic sex chromosomes have evolved repeatedly among vertebrate lineages despite largely deleterious reductions in gene dose. Understanding how this gene dose problem is overcome is hampered by the lack of genomic information at the base of tetrapods and comparisons across the evolutionary history of vertebrates. To address this problem, we produced a chromosome-level genome assembly for the African Bullfrog (Pyxicephalus adspersus)–an amphibian with heteromorphic ZW sex chromosomes–and discovered that the Bullfrog Z is surprisingly homologous to substantial portions of the human X. Using this new reference genome, we identified ancestral synteny among the sex chromosomes of major vertebrate lineages, showing…

Read More »

Sunday, September 22, 2019

Tumor-specific mitochondrial DNA variants are rarely detected in cell-free DNA.

The use of blood-circulating cell-free DNA (cfDNA) as a “liquid biopsy” in oncology is being explored for its potential as a cancer biomarker. Mitochondria contain their own circular genomic entity (mitochondrial DNA, mtDNA), up to even thousands of copies per cell. The mutation rate of mtDNA is several orders of magnitude higher than that of the nuclear DNA. Tumor-specific variants have been identified in tumors along the entire mtDNA, and their number varies among and within tumors. The high mtDNA copy number per cell and the high mtDNA mutation rate make it worthwhile to explore the potential of tumor-specific cf-mtDNA…

Read More »

Sunday, September 22, 2019

Evidence of non-tandemly repeated rDNAs and their intragenomic heterogeneity in Rhizophagus irregularis

Arbuscular mycorrhizal fungus (AMF) species are some of the most widespread symbionts of land plants. Our much improved reference genome assembly of a model AMF, Rhizophagus irregularis DAOM-181602 (total contigs?=?210), facilitated a discovery of repetitive elements with unusual characteristics. R. irregularis has only ten or 11 copies of complete 45S rDNAs, whereas the general eukaryotic genome has tens to thousands of rDNA copies. R. irregularis rDNAs are highly heterogeneous and lack a tandem repeat structure. These findings provide evidence for the hypothesis that rDNA heterogeneity depends on the lack of tandem repeat structures. RNA-Seq analysis confirmed that all rDNA variants…

Read More »

Sunday, September 22, 2019

npInv: accurate detection and genotyping of inversions using long read sub-alignment.

Detection of genomic inversions remains challenging. Many existing methods primarily target inzversions with a non repetitive breakpoint, leaving inverted repeat (IR) mediated non-allelic homologous recombination (NAHR) inversions largely unexplored.We present npInv, a novel tool specifically for detecting and genotyping NAHR inversion using long read sub-alignment of long read sequencing data. We benchmark npInv with other tools in both simulation and real data. We use npInv to generate a whole-genome inversion map for NA12878 consisting of 30 NAHR inversions (of which 15 are novel), including all previously known NAHR mediated inversions in NA12878 with flanking IR less than 7kb. Our genotyping…

Read More »

1 6 7 8 9 10

Subscribe for blog updates:

Archives