April 21, 2020  |  

Comprehensive transcriptome analysis reveals genes potentially involved in isoflavone biosynthesis in Pueraria thomsonii Benth.

Pueraria thomsonii Benth is an important medicinal plant. Transcriptome sequencing, unigene assembly, the annotation of transcripts and the study of gene expression profiles play vital roles in gene function research. However, the full-length transcriptome of P. thomsonii remains unknown. Here, we obtained 44,339 nonredundant transcripts of P. thomsonii by using the PacBio RS II Isoform and Illumina sequencing platforms, of which 43,195 were annotated genes. Compared with the expression levels in the plant roots, those of transcripts with a |fold change| = 4 and FDR < 0.01 in the leaves or stems were assigned as differentially expressed transcripts (DETs). In total, we found 9,225 DETs, 32 of which came from structural genes that were potentially involved in isoflavone biosynthesis. The expression profiles of 8 structural genes from the RNA-Seq data were validated by qRT-PCR. We identified 437 transcription factors (TFs) that were positively or negatively correlated with at least 1 of the structural genes involved in isoflavone biosynthesis using Pearson correlation coefficients (r) (r > 0.8 or r < -0.8). We also identified a total of 32 microRNAs (miRNAs), which targeted 805 transcripts. These miRNAs caused enriched function in 'ATP binding', 'defense response', 'ADP binding', and 'signal transduction'. Interestingly, MIR156a potentially promoted isoflavone biosynthesis by repressing SBP, and MIR319 promoted isoflavone biosynthesis by repressing TCP and HB-HD-ZIP. Finally, we identified 2,690 alternative splicing events, including that of the structural genes of trans-cinnamate 4-monooxygenase and pullulanase, which are potentially involved in the biosynthesis of isoflavone and starch, respectively, and of three TFs potentially involved in isoflavone biosynthesis. Together, these results provide us with comprehensive insight into the gene expression and regulation of P. thomsonii.


April 21, 2020  |  

Genome sequence and genetic transformation of a widely distributed and cultivated poplar.

Populus alba is widely distributed and cultivated in Europe and Asia. This species has been used for diverse studies. In this study, we assembled a de novo genome sequence of P. alba var. pyramidalis (= P. bolleana) and confirmed its high transformation efficiency and short transformation time by experiments. Through a process of hybrid genome assembly, a total of 464 M of the genome was assembled. Annotation analyses predicted 37 901 protein-coding genes. This genome is highly collinear to that of P. trichocarpa, with most genes having orthologs in the two species. We found a marked expansion of gene families related to histone and the hormone auxin but loss of disease resistance genes in P. alba if compared with the closely related P. trichocarpa. The genome sequence presented here represents a valuable resource for further molecular functional analyses of this species as a new tree model, poplar breeding practices and comparative genomic analyses across different poplars. © 2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.


April 21, 2020  |  

Full-length transcriptome analysis of Litopenaeus vannamei reveals transcript variants involved in the innate immune system.

To better understand the immune system of shrimp, this study combined PacBio isoform sequencing (Iso-Seq) and Illumina paired-end short reads sequencing methods to discover full-length immune-related molecules of the Pacific white shrimp, Litopenaeus vannamei. A total of 72,648 nonredundant full-length transcripts (unigenes) were generated with an average length of 2545 bp from five main tissues, including the hepatopancreas, cardiac stomach, heart, muscle, and pyloric stomach. These unigenes exhibited a high annotation rate (62,164, 85.57%) when compared against NR, NT, Swiss-Prot, Pfam, GO, KEGG and COG databases. A total of 7544 putative long noncoding RNAs (lncRNAs) were detected and 1164 nonredundant full-length transcripts (449 UniTransModels) participated in the alternative splicing (AS) events. Importantly, a total of 5279 nonredundant full-length unigenes were successfully identified, which were involved in the innate immune system, including 9 immune-related processes, 19 immune-related pathways and 10 other immune-related systems. We also found wide transcript variants, which increased the number and function complexity of immune molecules; for example, toll-like receptors (TLRs) and interferon regulatory factors (IRFs). The 480 differentially expressed genes (DEGs) were significantly higher or tissue-specific expression patterns in the hepatopancreas compared with that in other four tested tissues (FDR <0.05). Furthermore, the expression levels of six selected immune-related DEGs and putative IRFs were validated using real-time PCR technology, substantiating the reliability of the PacBio Iso-seq results. In conclusion, our results provide new genetic resources of long-read full-length transcripts data and information for identifying immune-related genes, which are an invaluable transcriptomic resource as genomic reference, especially for further exploration of the innate immune and defense mechanisms of shrimp. Copyright © 2019 Elsevier Ltd. All rights reserved.


April 21, 2020  |  

Long-read assembly of the Chinese rhesus macaque genome and identification of ape-specific structural variants.

We present a high-quality de novo genome assembly (rheMacS) of the Chinese rhesus macaque (Macaca mulatta) using long-read sequencing and multiplatform scaffolding approaches. Compared to the current Indian rhesus macaque reference genome (rheMac8), rheMacS increases sequence contiguity 75-fold, closing 21,940 of the remaining assembly gaps (60.8 Mbp). We improve gene annotation by generating more than two million full-length transcripts from ten different tissues by long-read RNA sequencing. We sequence resolve 53,916 structural variants (96% novel) and identify 17,000 ape-specific structural variants (ASSVs) based on comparison to ape genomes. Many ASSVs map within ChIP-seq predicted enhancer regions where apes and macaque show diverged enhancer activity and gene expression. We further characterize a subset that may contribute to ape- or great-ape-specific phenotypic traits, including taillessness, brain volume expansion, improved manual dexterity, and large body size. The rheMacS genome assembly serves as an ideal reference for future biomedical and evolutionary studies.


April 21, 2020  |  

Full-length transcript sequencing and comparative transcriptomic analysis to evaluate the contribution of osmotic and ionic stress components towards salinity tolerance in the roots of cultivated alfalfa (Medicago sativa L.).

Alfalfa is the most extensively cultivated forage legume. Salinity is a major environmental factor that impacts on alfalfa’s productivity. However, little is known about the molecular mechanisms underlying alfalfa responses to salinity, especially the relative contribution of the two important components of osmotic and ionic stress.In this study, we constructed the first full-length transcriptome database for alfalfa root tips under continuous NaCl and mannitol treatments for 1, 3, 6, 12, and 24?h (three biological replicates for each time points, including the control group) via PacBio Iso-Seq. This resulted in the identification of 52,787 full-length transcripts, with an average length of 2551?bp. Global transcriptional changes in the same 33 stressed samples were then analyzed via BGISEQ-500 RNA-Seq. Totals of 8861 NaCl-regulated and 8016 mannitol-regulated differentially expressed genes (DEGs) were identified. Metabolic analyses revealed that these DEGs overlapped or diverged in the cascades of molecular networks involved in signal perception, signal transduction, transcriptional regulation, and antioxidative defense. Notably, several well characterized signalling pathways, such as CDPK, MAPK, CIPK, and PYL-PP2C-SnRK2, were shown to be involved in osmotic stress, while the SOS core pathway was activated by ionic stress. Moreover, the physiological shifts of catalase and peroxidase activity, glutathione and proline content were in accordance with dynamic transcript profiles of the relevant genes, indicating that antioxidative defense system plays critical roles in response to salinity stress.Overall, our study provides evidence that the response to salinity stress in alfalfa includes both osmotic and ionic components. The key osmotic and ionic stress-related genes are candidates for future studies as potential targets to improve resistance to salinity stress via genetic engineering.


April 21, 2020  |  

Identification of genes associated with ricinoleic acid accumulation in Hiptage benghalensis via transcriptome analysis.

Ricinoleic acid is a high-value hydroxy fatty acid with broad industrial applications. Hiptage benghalensis seed oil contains a high amount of ricinoleic acid (~?80%) and represents an emerging source of this unusual fatty acid. However, the mechanism of ricinoleic acid accumulation in H. benghalensis is yet to be explored at the molecular level, which hampers the exploration of its potential in ricinoleic acid production.To explore the molecular mechanism of ricinoleic acid biosynthesis and regulation, H. benghalensis seeds were harvested at five developing stages (13, 16, 19, 22, and 25 days after pollination) for lipid analysis. The results revealed that the rapid accumulation of ricinoleic acid occurred at the early-mid-seed development stages (16-22 days after pollination). Subsequently, the gene transcription profiles of the developing seeds were characterized via a comprehensive transcriptome analysis with second-generation sequencing and single-molecule real-time sequencing. Differential expression patterns were identified in 12,555 transcripts, including 71 enzymes in lipid metabolic pathways, 246 putative transcription factors (TFs) and 124 long noncoding RNAs (lncRNAs). Twelve genes involved in diverse lipid metabolism pathways, including fatty acid biosynthesis and modification (hydroxylation), lipid traffic, triacylglycerol assembly, acyl editing and oil-body formation, displayed high expression levels and consistent expression patterns with ricinoleic acid accumulation in the developing seeds, suggesting their primary roles in ricinoleic acid production. Subsequent co-expression network analysis identified 57 TFs and 35 lncRNAs, which are putatively involved in the regulation of ricinoleic acid biosynthesis. The transcriptome data were further validated by analyzing the expression profiles of key enzyme-encoding genes, TFs and lncRNAs with quantitative real-time PCR. Finally, a network of genes associated with ricinoleic acid accumulation in H. benghalensis was established.This study was the first step toward the understating of the molecular mechanisms of ricinoleic acid biosynthesis and oil accumulation in H. benghalensis seeds and identified a pool of novel genes regulating ricinoleic acid accumulation. The results set a foundation for developing H. benghalensis into a novel ricinoleic acid feedstock at the transcriptomic level and provided valuable candidate genes for improving ricinoleic acid production in other plants.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.