Menu
September 22, 2019  |  

Identification of microbial profile of Koji using Single Molecule, Real-Time Sequencing technology.

Koji is a kind of Japanese traditional fermented starter that has been used for centuries. Many fermented foods are made from koji, such as sake, miso, and soy sauce. This study used the single molecule real-time sequencing technology (SMRT) to investigate the bacterial and fungal microbiota of 3 Japanese koji samples. After SMRT analysis, a total of 39121 high-quality sequences were generated, including 14354 bacterial and 24767 fungal sequence reads. The high-quality gene sequences were assigned to 5 bacterial and 2 fungal plyla, dominated by Proteobacteria and Ascomycota, respectively. At the genus level, Ochrobactrum and Wickerhamomyces were the most abundant bacterial and fungal genera, respectively. The predominant bacterial and fungal species were Ochrobactrum lupini and Wickerhamomyces anomalus, respectively. Our study profiled the microbiota composition of 3 Japanese koji samples to the species level precision. The results may be useful for further development of traditional fermented products, especially optimization of koji preparation. Meanwhile, this study has demonstrated that SMRT is a robust tool for analyzing the microbial composition in food samples.© 2017 Institute of Food Technologists®.


September 22, 2019  |  

Next-generation sequencing for pathogen detection and identification

Over the past decade, the field of genomics has seen such drastic improvements in sequencing chemistries that high-throughput sequencing, or next-generation sequencing (NGS), is being applied to generate data across many disciplines. NGS instruments are becoming less expensive, faster, and smaller, and therefore are being adopted in an increasing number of laboratories, including clinical laboratories. Thus far, clinical use of NGS has been mostly focused on the human genome, for purposes such as characterizing the molecular basis of cancer or for diagnosing and understanding the basis of rare genetic disorders. There are, however, an increasing number of examples whereby NGS is employed to discover novel pathogens, and these cases provide precedent for the use of NGS in microbial diagnostics. NGS has many advantages over traditional microbial diagnostic methods, such as unbiased rather than pathogen-specific protocols, ability to detect fastidious or non-culturable organisms, and ability to detect co-infections. One of the most impressive advantages of NGS is that it requires little or no prior knowledge of the pathogen, unlike many other diagnostic assays; therefore for pathogen discovery, NGS is very valuable. However, despite these advantages, there are challenges involved in implementing NGS for routine clinical microbiological diagnosis. We discuss these advantages and challenges in the context of recently described research studies.


September 22, 2019  |  

A novel enrichment strategy reveals unprecedented number of novel transcription start sites at single base resolution in a model prokaryote and the gut microbiome.

The initiating nucleotide found at the 5′ end of primary transcripts has a distinctive triphosphorylated end that distinguishes these transcripts from all other RNA species. Recognizing this distinction is key to deconvoluting the primary transcriptome from the plethora of processed transcripts that confound analysis of the transcriptome. The currently available methods do not use targeted enrichment for the 5’end of primary transcripts, but rather attempt to deplete non-targeted RNA.We developed a method, Cappable-seq, for directly enriching for the 5′ end of primary transcripts and enabling determination of transcription start sites at single base resolution. This is achieved by enzymatically modifying the 5′ triphosphorylated end of RNA with a selectable tag. We first applied Cappable-seq to E. coli, achieving up to 50 fold enrichment of primary transcripts and identifying an unprecedented 16539 transcription start sites (TSS) genome-wide at single base resolution. We also applied Cappable-seq to a mouse cecum sample and identified TSS in a microbiome.Cappable-seq allows for the first time the capture of the 5′ end of primary transcripts. This enables a unique robust TSS determination in bacteria and microbiomes.  In addition to and beyond TSS determination, Cappable-seq depletes ribosomal RNA and reduces the complexity of the transcriptome to a single quantifiable tag per transcript enabling digital profiling of gene expression in any microbiome.


September 22, 2019  |  

Metataxonomic and metagenomic approaches vs. culture-based techniques for clinical pathology.

Diagnoses that are both timely and accurate are critically important for patients with life-threatening or drug resistant infections. Technological improvements in High-Throughput Sequencing (HTS) have led to its use in pathogen detection and its application in clinical diagnoses of infectious diseases. The present study compares two HTS methods, 16S rRNA marker gene sequencing (metataxonomics) and whole metagenomic shotgun sequencing (metagenomics), in their respective abilities to match the same diagnosis as traditional culture methods (culture inference) for patients with ventilator associated pneumonia (VAP). The metagenomic analysis was able to produce the same diagnosis as culture methods at the species-level for five of the six samples, while the metataxonomic analysis was only able to produce results with the same species-level identification as culture for two of the six samples. These results indicate that metagenomic analyses have the accuracy needed for a clinical diagnostic tool, but full integration in diagnostic protocols is contingent on technological improvements to decrease turnaround time and lower costs.


September 22, 2019  |  

Next-generation approaches to advancing eco-immunogenomic research in critically endangered primates.

High-throughput sequencing platforms are generating massive amounts of genomic data from nonmodel species, and these data sets are valuable resources that can be mined to advance a number of research areas. An example is the growing amount of transcriptome data that allow for examination of gene expression in nonmodel species. Here, we show how publicly available transcriptome data from nonmodel primates can be used to design novel research focused on immunogenomics. We mined transcriptome data from the world’s most endangered group of primates, the lemurs of Madagascar, for sequences corresponding to immunoglobulins. Our results confirmed homology between strepsirrhine and haplorrhine primate immunoglobulins and allowed for high-throughput sequencing of expressed antibodies (Ig-seq) in Coquerel’s sifaka (Propithecus coquereli). Using both Pacific Biosciences RS and Ion Torrent PGM sequencing, we performed Ig-seq on two individuals of Coquerel’s sifaka. We generated over 150 000 sequences of expressed antibodies, allowing for molecular characterization of the antigen-binding region. Our analyses suggest that similar VDJ expression patterns exist across all primates, with sequences closely related to the human VH 3 immunoglobulin family being heavily represented in sifaka antibodies. Moreover, the antigen-binding region of sifaka antibodies exhibited similar amino acid variation with respect to haplorrhine primates. Our study represents the first attempt to characterize sequence diversity of the expressed antibody repertoire in a species of lemur. We anticipate that methods similar to ours will provide the framework for investigating the adaptive immune response in wild populations of other nonmodel organisms and can be used to advance the burgeoning field of eco-immunology. © 2014 John Wiley & Sons Ltd.


September 22, 2019  |  

Effects of antibiotic on microflora in ileum and cecum for broilers by 16S rRNA sequence analysis.

An experiment was conducted to analyze and compare the microbial composition, abundance, dynamic distribution, and functions without and with antibiotic fed to broilers. A 16S rRNA-sequencing approach was used to evaluate the bacterial composition of the gut of male broilers under different groups. A total of 240 1-day old AA male broilers were randomly assigned to two groups, with 120 broilers per group. The treatment group was administered an antibiotic with their feed, while the control group was not administered antibiotic (control group). A total of 10 replicates were assessed per treatment. The control group was fed a basal diet containing corn, soybean meal, and cottonseed meal and met the nutritional requirement. The antibiotic group was fed 100 mg/kg aureomycin (based on the basal diet). The trial lasted 42 days. Operational taxonomic unit partition and classification, alpha diversity, taxonomic composition, beta diversity, and microflora comparative analyses along with key species screening were performed for all of the treatment groups. Our data indicate that aureomycin treatment in broilers is directly correlated with variations of the gut content of specific bacterial taxa, and herein provide insights into the impact of antibiotic on microbial communities in cecum and ileum of broiler chickens.© 2018 Japanese Society of Animal Science.


September 22, 2019  |  

Sequencing 16S rRNA gene fragments using the PacBio SMRT DNA sequencing system.

Over the past 10 years, microbial ecologists have largely abandoned sequencing 16S rRNA genes by the Sanger sequencing method and have instead adopted highly parallelized sequencing platforms. These new platforms, such as 454 and Illumina’s MiSeq, have allowed researchers to obtain millions of high quality but short sequences. The result of the added sequencing depth has been significant improvements in experimental design. The tradeoff has been the decline in the number of full-length reference sequences that are deposited into databases. To overcome this problem, we tested the ability of the PacBio Single Molecule, Real-Time (SMRT) DNA sequencing platform to generate sequence reads from the 16S rRNA gene. We generated sequencing data from the V4, V3-V5, V1-V3, V1-V5, V1-V6, and V1-V9 variable regions from within the 16S rRNA gene using DNA from a synthetic mock community and natural samples collected from human feces, mouse feces, and soil. The mock community allowed us to assess the actual sequencing error rate and how that error rate changed when different curation methods were applied. We developed a simple method based on sequence characteristics and quality scores to reduce the observed error rate for the V1-V9 region from 0.69 to 0.027%. This error rate is comparable to what has been observed for the shorter reads generated by 454 and Illumina’s MiSeq sequencing platforms. Although the per base sequencing cost is still significantly more than that of MiSeq, the prospect of supplementing reference databases with full-length sequences from organisms below the limit of detection from the Sanger approach is exciting.


September 22, 2019  |  

Initial colonization, community assembly and ecosystem function: fungal colonist traits and litter biochemistry mediate decay rate.

Priority effects are an important ecological force shaping biotic communities and ecosystem processes, in which the establishment of early colonists alters the colonization success of later-arriving organisms via competitive exclusion and habitat modification. However, we do not understand which biotic and abiotic conditions lead to strong priority effects and lasting historical contingencies. Using saprotrophic fungi in a model leaf decomposition system, we investigated whether compositional and functional consequences of initial colonization were dependent on initial colonizer traits, resource availability or a combination thereof. To test these ideas, we factorially manipulated leaf litter biochemistry and initial fungal colonist identity, quantifying subsequent community composition, using neutral genetic markers, and community functional characteristics, including enzyme potential and leaf decay rates. During the first 3 months, initial colonist respiration rate and physiological capacity to degrade plant detritus were significant determinants of fungal community composition and leaf decay, indicating that rapid growth and lignolytic potential of early colonists contributed to altered trajectories of community assembly. Further, initial colonization on oak leaves generated increasingly divergent trajectories of fungal community composition and enzyme potential, indicating stronger initial colonizer effects on energy-poor substrates. Together, these observations provide evidence that initial colonization effects, and subsequent consequences on litter decay, are dependent upon substrate biochemistry and physiological traits within a regional species pool. Because microbial decay of plant detritus is important to global C storage, our results demonstrate that understanding the mechanisms by which initial conditions alter priority effects during community assembly may be key to understanding the drivers of ecosystem-level processes. © 2015 John Wiley & Sons Ltd.


September 22, 2019  |  

Single cell genomic study of Dehalococcoidetes species from deep-sea sediments of the Peruvian Margin.

The phylum Chloroflexi is one of the most frequently detected phyla in the subseafloor of the Pacific Ocean margins. Dehalogenating Chloroflexi (Dehalococcoidetes) was originally discovered as the key microorganisms mediating reductive dehalogenation via their key enzymes reductive dehalogenases (Rdh) as sole mode of energy conservation in terrestrial environments. The frequent detection of Dehalococcoidetes-related 16S rRNA and rdh genes in the marine subsurface implies a role for dissimilatory dehalorespiration in this environment; however, the two genes have never been linked to each other. To provide fundamental insights into the metabolism, genomic population structure and evolution of marine subsurface Dehalococcoidetes sp., we analyzed a non-contaminated deep-sea sediment core sample from the Peruvian Margin Ocean Drilling Program (ODP) site 1230, collected 7.3?m below the seafloor by a single cell genomic approach. We present for the first time single cell genomic data on three deep-sea Chloroflexi (Dsc) single cells from a marine subsurface environment. Two of the single cells were considered to be part of a local Dehalococcoidetes population and assembled together into a 1.38-Mb genome, which appears to be at least 85% complete. Despite a high degree of sequence-level similarity between the shared proteins in the Dsc and terrestrial Dehalococcoidetes, no evidence for catabolic reductive dehalogenation was found in Dsc. The genome content is however consistent with a strictly anaerobic organotrophic or lithotrophic lifestyle.


September 22, 2019  |  

Scale-up of sediment microbial fuel cells.

Sediment microbial fuel cells (SMFCs) are used as renewable power sources to operate remote sensors. However, increasing the electrode surface area results in decreased power density, which demonstrates that SMFCs do not scale up with size. As an alternative to the physical scale-up of SMFCs, we proposed that it is possible to scale up power by using smaller-sized individually operated SMFCs connected to a power management system that electrically isolates the anodes and cathodes. To demonstrate our electronic scale-up approach, we operated one 0.36-m2 SMFC (called a single-equivalent SMFC) and four independent SMFCs of 0.09 m2 each (called scaled-up SMFCs) and managed the power using an innovative custom-developed power management system. We found that the single-equivalent SMFC and the scaled-up SMFCs produced similar power for the first 155 days. However, in the long term (>155 days) our scaled-up SMFCs generated significantly more power than the single-equivalent SMFC (2.33 mW vs. 0.64 mW). Microbial community analysis of the single-equivalent SMFC and the scaled-up SMFCs showed very similar results, demonstrating that the difference in operation mode had no significant effect on the microbial community. When we compared scaled-up SMFCs with parallel SMFCs, we found that the scaled-up SMFCs generated more power. Our novel approach demonstrates that SMFCs can be scaled up electronically.


September 22, 2019  |  

The effects of probiotics administration on the milk production, milk components and fecal bacteria microbiota of dairy cows

Probiotics administration can improve host health. This study aims to determine the effects of probiotics (Lactobacillus casei Zhang and Lactobacillus plantarum P-8) administration on milk production, milk functional components, milk composition, and fecal microbiota of dairy cows. Variations in the fecal bacteria microbiota between treatments were assessed based on 16S rRNA profiles determined by PacBio single molecule real-time sequencing technology. The probiotics supplementation significantly increased the milk production and the contents of milk immunoglobulin G (IgG), lactoferrin (LTF), lysozyme (LYS) and lactoperoxidase (LP), while the somatic cell counts (SCC) significantly decreased (P < 0.01). However, no significant difference was found in the milk fat, protein and lactose contents (P > 0.05). Although the probiotics supplementation did not change the fecal bacteria richness and diversity, significantly more rumen fermentative bacteria (Bacteroides, Roseburia, Ruminococcus, Clostridium, Coprococcus and Dorea) and beneficial bacteria (Faecalibacterium prausnitzii) were found in the probiotics treatment group. Meanwhile, some opportunistic pathogens e.g. Bacillus cereus, Cronobacter sakazakii and Alkaliphilus oremlandii, were suppressed. Additionally, we found some correlations between the milk production, milk components and fecal bacteria. To sum up, our study demonstrated the beneficial effects of probiotics application in improving the quality and quantity of cow milk production.


September 22, 2019  |  

Single-molecule DNA sequencing of acute myeloid leukemia and myelodysplastic syndromes with multiple TP53 alterations.

Although the frequency of TP53 mutations in hemato- logic malignancies is low, these mutations have a high clinical relevance and are usually associated with poor prognosis. Somatic TP53 mutations have been detected in up to 73.3% of cases of acute myeloid leukemia (AML) with complex karyotype and 18.9% of AML with other unfavorable cytogenetic risk factors. AML with TP53 mutations, and/or chromosomal aneuploidy, has been defined as a distinct AML subtype. In low-risk myelodysplastic syndromes (MDS), TP53 mutations occur at an early disease stage and predict disease progression. TP53 mutation diagnosis is now part of the revised European LeukemiaNet (ELN) guidelines.


September 22, 2019  |  

A comprehensive benchmarking study of protocols and sequencing platforms for 16S rRNA community profiling.

In the last 5 years, the rapid pace of innovations and improvements in sequencing technologies has completely changed the landscape of metagenomic and metagenetic experiments. Therefore, it is critical to benchmark the various methodologies for interrogating the composition of microbial communities, so that we can assess their strengths and limitations. The most common phylogenetic marker for microbial community diversity studies is the 16S ribosomal RNA gene and in the last 10 years the field has moved from sequencing a small number of amplicons and samples to more complex studies where thousands of samples and multiple different gene regions are interrogated.We assembled 2 synthetic communities with an even (EM) and uneven (UM) distribution of archaeal and bacterial strains and species, as metagenomic control material, to assess performance of different experimental strategies. The 2 synthetic communities were used in this study, to highlight the limitations and the advantages of the leading sequencing platforms: MiSeq (Illumina), The Pacific Biosciences RSII, 454 GS-FLX/+ (Roche), and IonTorrent (Life Technologies). We describe an extensive survey based on synthetic communities using 3 experimental designs (fusion primers, universal tailed tag, ligated adaptors) across the 9 hypervariable 16S rDNA regions. We demonstrate that library preparation methodology can affect data interpretation due to different error and chimera rates generated during the procedure. The observed community composition was always biased, to a degree that depended on the platform, sequenced region and primer choice. However, crucially, our analysis suggests that 16S rRNA sequencing is still quantitative, in that relative changes in abundance of taxa between samples can be recovered, despite these biases.We have assessed a range of experimental conditions across several next generation sequencing platforms using the most up-to-date configurations. We propose that the choice of sequencing platform and experimental design needs to be taken into consideration in the early stage of a project by running a small trial consisting of several hypervariable regions to quantify the discriminatory power of each region. We also suggest that the use of a synthetic community as a positive control would be beneficial to identify the potential biases and procedural drawbacks that may lead to data misinterpretation. The results of this study will serve as a guideline for making decisions on which experimental condition and sequencing platform to consider to achieve the best microbial profiling.


September 22, 2019  |  

Next generation multilocus sequence typing (NGMLST) and the analytical software program MLSTEZ enable efficient, cost-effective, high-throughput, multilocus sequencing typing.

Multilocus sequence typing (MLST) has become the preferred method for genotyping many biological species, and it is especially useful for analyzing haploid eukaryotes. MLST is rigorous, reproducible, and informative, and MLST genotyping has been shown to identify major phylogenetic clades, molecular groups, or subpopulations of a species, as well as individual strains or clones. MLST molecular types often correlate with important phenotypes. Conventional MLST involves the extraction of genomic DNA and the amplification by PCR of several conserved, unlinked gene sequences from a sample of isolates of the taxon under investigation. In some cases, as few as three loci are sufficient to yield definitive results. The amplicons are sequenced, aligned, and compared by phylogenetic methods to distinguish statistically significant differences among individuals and clades. Although MLST is simpler, faster, and less expensive than whole genome sequencing, it is more costly and time-consuming than less reliable genotyping methods (e.g. amplified fragment length polymorphisms). Here, we describe a new MLST method that uses next-generation sequencing, a multiplexing protocol, and appropriate analytical software to provide accurate, rapid, and economical MLST genotyping of 96 or more isolates in single assay. We demonstrate this methodology by genotyping isolates of the well-characterized, human pathogenic yeast Cryptococcus neoformans. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.


September 22, 2019  |  

The features of mucosa-associated microbiota in primary sclerosing cholangitis.

Little is known about the role of the microbiome in primary sclerosing cholangitis.To explore the mucosa-associated microbiota in primary sclerosing cholangitis (PSC) patients across different locations in the gut, and to compare it with inflammatory bowel disease (IBD)-only patients and healthy controls.Biopsies from the terminal ileum, right colon, and left colon were collected from patients and healthy controls undergoing colonoscopy. Microbiota profiling using bacterial 16S rRNA sequencing was performed on all biopsies.Forty-four patients were recruited: 20 with PSC (19 with PSC-IBD and one with PSC-only), 15 with IBD-only and nine healthy controls. The overall microbiome profile was similar throughout different locations in the gut. No differences in the global microbiome profile were found. However, we observed significant PSC-associated enrichment in Barnesiellaceae at the family level, and in Blautia and an unidentified Barnesiellaceae at the genus level. At the operational taxa unit level, most shifts in PSC were observed in Clostridiales and Bacteroidales orders, with approximately 86% of shifts occurring within the former order.The overall microbiota profile was similar across multiple locations in the gut from the same individual regardless of disease status. In this study, the mucosa associated-microbiota of patients with primary sclerosing cholangitis was characterised by enrichment of Blautia and Barnesiellaceae and by major shifts in operational taxa units within Clostridiales order.© 2016 John Wiley & Sons Ltd.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.