Menu
September 22, 2019  |  

Differential responses of total and active soil microbial communities to long-term experimental N deposition

Abstract The relationship between total and metabolically active soil microbial communities can provide insight into how these communities are impacted by environmental change, which may impact the flow of energy and cycling of nutrients in the future. For example, the anthropogenic release of biologically available N has dramatically increased over the last 150 years, which can alter the processes controlling C storage in terrestrial ecosystems. In a northern hardwood forest ecosystem located in Michigan, USA, nearly 20 years of experimentally increased atmospheric N deposition has reduced forest floor decay and increased soil C storage. A microbial mechanism underlies this response, as compositional changes in the soil microbial community have been concomitantly documented with these biogeochemical changes. Here, we co-extracted DNA and RNA from decaying leaf litter to determine if experimental atmospheric N deposition has lowered the diversity and altered the composition of the whole communities of bacteria and fungi (i.e., DNA-based) and well as its active members (i.e., RNA-based). In our experiment, experimental N deposition did not affect the composition, diversity, or richness of the total forest floor fungal community, but did lower the diversity (-8%), as well as altered the composition of the active fungal community. In contrast, neither the total nor active forest floor bacterial community was significantly affected by experimental N deposition. Our results suggest that future rates of atmospheric N deposition can fundamentally alter the organization of the saprotrophic soil fungal community, key mediators of C cycling in terrestrial environments.


September 22, 2019  |  

Advantages of genome sequencing by long-read sequencer using SMRT technology in medical area.

PacBio RS II is the first commercialized third-generation DNA sequencer able to sequence a single molecule DNA in real-time without amplification. PacBio RS II’s sequencing technology is novel and unique, enabling the direct observation of DNA synthesis by DNA polymerase. PacBio RS II confers four major advantages compared to other sequencing technologies: long read lengths, high consensus accuracy, a low degree of bias, and simultaneous capability of epigenetic characterization. These advantages surmount the obstacle of sequencing genomic regions such as high/low G+C, tandem repeat, and interspersed repeat regions. Moreover, PacBio RS II is ideal for whole genome sequencing, targeted sequencing, complex population analysis, RNA sequencing, and epigenetics characterization. With PacBio RS II, we have sequenced and analyzed the genomes of many species, from viruses to humans. Herein, we summarize and review some of our key genome sequencing projects, including full-length viral sequencing, complete bacterial genome and almost-complete plant genome assemblies, and long amplicon sequencing of a disease-associated gene region. We believe that PacBio RS II is not only an effective tool for use in the basic biological sciences but also in the medical/clinical setting.


September 22, 2019  |  

BIGMAC : breaking inaccurate genomes and merging assembled contigs for long read metagenomic assembly.

The problem of de-novo assembly for metagenomes using only long reads is gaining attention. We study whether post-processing metagenomic assemblies with the original input long reads can result in quality improvement. Previous approaches have focused on pre-processing reads and optimizing assemblers. BIGMAC takes an alternative perspective to focus on the post-processing step.Using both the assembled contigs and original long reads as input, BIGMAC first breaks the contigs at potentially mis-assembled locations and subsequently scaffolds contigs. Our experiments on metagenomes assembled from long reads show that BIGMAC can improve assembly quality by reducing the number of mis-assemblies while maintaining or increasing N50 and N75. Moreover, BIGMAC shows the largest N75 to number of mis-assemblies ratio on all tested datasets when compared to other post-processing tools. BIGMAC demonstrates the effectiveness of the post-processing approach in improving the quality of metagenomic assemblies.


September 22, 2019  |  

SMRT-Cappable-seq reveals complex operon variants in bacteria.

Current methods for genome-wide analysis of gene expression require fragmentation of original transcripts into small fragments for short-read sequencing. In bacteria, the resulting fragmented information hides operon complexity. Additionally, in vivo processing of transcripts confounds the accurate identification of the 5′ and 3′ ends of operons. Here we develop a methodology called SMRT-Cappable-seq that combines the isolation of un-fragmented primary transcripts with single-molecule long read sequencing. Applied to E. coli, this technology results in an accurate definition of the transcriptome with 34% of known operons from RegulonDB being extended by at least one gene. Furthermore, 40% of transcription termination sites have read-through that alters the gene content of the operons. As a result, most of the bacterial genes are present in multiple operon variants reminiscent of eukaryotic splicing. By providing such granularity in the operon structure, this study represents an important resource for the study of prokaryotic gene network and regulation.


September 22, 2019  |  

Carbohydrate staple food modulates gut microbiota of Mongolians in China.

Gut microbiota is a determining factor in human physiological functions and health. It is commonly accepted that diet has a major influence on the gut microbial community, however, the effects of diet is not fully understood. The typical Mongolian diet is characterized by high and frequent consumption of fermented dairy products and red meat, and low level of carbohydrates. In this study, the gut microbiota profile of 26 Mongolians whom consumed wheat, rice and oat as the sole carbohydrate staple food for a week each consecutively was determined. It was observed that changes in staple carbohydrate rapidly (within a week) altered gut microbial community structure and metabolic pathway of the subjects. Wheat and oat favored bifidobacteria (Bifidobacterium catenulatum, Bifodobacteriumbifidum, Bifidobacterium adolescentis); whereas rice suppressed bifidobacteria (Bifidobacterium longum, Bifidobacterium adolescentis) and wheat suppresses Lactobaciilus, Ruminococcus and Bacteroides. The study exhibited two gut microbial clustering patterns with the preference of fucosyllactose utilization linking to fucosidase genes (glycoside hydrolase family classifications: GH95 and GH29) encoded by Bifidobacterium, and xylan and arabinoxylan utilization linking to xylanase and arabinoxylanase genes encoded by Bacteroides. There was also a correlation between Lactobacillus ruminis and sialidase, as well as Butyrivibrio crossotus and xylanase/xylosidase. Meanwhile, a strong concordance was found between the gastrointestinal bacterial microbiome and the intestinal virome. Present research will contribute to understanding the impacts of the dietary carbohydrate on human gut microbiome, which will ultimately help understand relationships between dietary factor, microbial populations, and the health of global humans.


September 22, 2019  |  

Increasing sorghum yields by seed treatment with an aqueous extract of the plant Eclipta alba may involve a dual mechanism of hydropriming and suppression of fungal pathogens

Background Soaking of sorghum seeds for six hours in an aqueous extract of Eclipta alba has been shown to increase the yield of sorghum in field experiments. The effect on yield is known to depend on field location and a mechanism involving pathogen suppression has been proposed. However, it has not been clear to which extent the same effect can be obtained by soaking of seeds in pure water (hydropriming). To address this question, fifty eight field tests were conducted comparing no treatment of seeds, hydropriming and treatment with plant extract. Experiments were distributed over three years in Burkina Faso on three locations previously showing a positive yield response to the plant extract. Results Despite strong variation across locations and years, a mean yield increase of 19.6% was found for hydropriming compared to no treatment (p?


September 22, 2019  |  

16S rRNA long-read sequencing of the granulation tissue from nonsmokers and smokers-severe chronic periodontitis patients

Smoking has been associated with increased risk of periodontitis. The aim of the present study was to compare the periodontal disease severity among smokers and nonsmokers which may help in better understanding of predisposition to this chronic inflammation mediated diseases. We selected deep-seated infected granulation tissue removed during periodontal flap surgery procedures for identification and differential abundance of residential bacterial species among smokers and nonsmokers through long-read sequencing technology targeting full-length 16S rRNA gene. A total of 8 phyla were identified among which Firmicutes and Bacteroidetes were most dominating. Differential abundance analysis of OTUs through PICRUST showed significant (p>0.05) abundance of Phyla-Fusobacteria (Streptobacillus moniliformis); Phyla-Firmicutes (Streptococcus equi), and Phyla Proteobacteria (Enhydrobacter aerosaccus) in nonsmokers compared to smokers. The differential abundance of oral metagenomes in smokers showed significant enrichment of host genes modulating pathways involving primary immunodeficiency, citrate cycle, streptomycin biosynthesis, vitamin B6 metabolism, butanoate metabolism, glycine, serine, and threonine metabolism pathways. While thiamine metabolism, amino acid metabolism, homologous recombination, epithelial cell signaling, aminoacyl-tRNA biosynthesis, phosphonate/phosphinate metabolism, polycyclic aromatic hydrocarbon degradation, synthesis and degradation of ketone bodies, translation factors, Ascorbate and aldarate metabolism, and DNA replication pathways were significantly enriched in nonsmokers, modulation of these pathways in oral cavities due to differential enrichment of metagenomes in smokers may lead to an increased susceptibility to infections and/or higher formation of DNA adducts, which may increase the risk of carcinogenesis.


September 22, 2019  |  

Microbial phylogenetic profiling with the Pacific Biosciences sequencing platform.

High-throughput sequencing of 16S rRNA gene amplicons has revolutionized the capacity and depth of microbial community profiling. Several sequencing platforms are available, but most phylogenetic studies are performed on the 454-pyrosequencing platform because its longer reads can give finer phylogenetic resolution. The Pacific Biosciences (PacBio) sequencing platform is significantly less expensive per run, does not rely on amplification for library generation, and generates reads that are, on average, four times longer than those from 454 (C2 chemistry), but the resulting high error rates appear to preclude its use in phylogenetic profiling. Recently, however, the PacBio platform was used to characterize four electrosynthetic microbiomes to the genus-level for less than USD 1,000 through the use of PacBio’s circular consensus sequence technology. Here, we describe in greater detail: 1) the output from successful 16S rRNA gene amplicon profiling with PacBio, 2) how the analysis was contingent upon several alterations to standard bioinformatic quality control workflows, and 3) the advantages and disadvantages of using the PacBio platform for community profiling.


September 22, 2019  |  

Dynamic regulation of HIV-1 mRNA populations analyzed by single-molecule enrichment and long-read sequencing.

Alternative RNA splicing greatly expands the repertoire of proteins encoded by genomes. Next-generation sequencing (NGS) is attractive for studying alternative splicing because of the efficiency and low cost per base, but short reads typical of NGS only report mRNA fragments containing one or few splice junctions. Here, we used single-molecule amplification and long-read sequencing to study the HIV-1 provirus, which is only 9700 bp in length, but encodes nine major proteins via alternative splicing. Our data showed that the clinical isolate HIV-1(89.6) produces at least 109 different spliced RNAs, including a previously unappreciated ~1 kb class of messages, two of which encode new proteins. HIV-1 message populations differed between cell types, longitudinally during infection, and among T cells from different human donors. These findings open a new window on a little studied aspect of HIV-1 replication, suggest therapeutic opportunities and provide advanced tools for the study of alternative splicing.


September 22, 2019  |  

Metagenomic binning and association of plasmids with bacterial host genomes using DNA methylation.

Shotgun metagenomics methods enable characterization of microbial communities in human microbiome and environmental samples. Assembly of metagenome sequences does not output whole genomes, so computational binning methods have been developed to cluster sequences into genome ‘bins’. These methods exploit sequence composition, species abundance, or chromosome organization but cannot fully distinguish closely related species and strains. We present a binning method that incorporates bacterial DNA methylation signatures, which are detected using single-molecule real-time sequencing. Our method takes advantage of these endogenous epigenetic barcodes to resolve individual reads and assembled contigs into species- and strain-level bins. We validate our method using synthetic and real microbiome sequences. In addition to genome binning, we show that our method links plasmids and other mobile genetic elements to their host species in a real microbiome sample. Incorporation of DNA methylation information into shotgun metagenomics analyses will complement existing methods to enable more accurate sequence binning.


September 22, 2019  |  

Profiling of oral microbiota in early childhood caries using Single-Molecule Real-Time Sequencing

Background: Alterations of oral microbiota are the main cause of the progression of caries. The goal of this study was to characterize the oral microbiota in childhood caries based on single-molecule real-time sequencing. Methods: A total of 21 preschoolers, aged 3-5 years old with severe early childhood caries, and 20 age-matched, caries-free children as controls were recruited. Saliva samples were collected, followed by DNA extraction, Pacbio sequencing and phylogenetic analyses of the oral microbial communities. Results: 876 species derived from 13 known bacterial phyla and 110 genera were detected from 41 children using Pacbio sequencing. At the species level, 38 species, including Veillonella spp., Streptococcus spp., Prevotella spp. and Lactobacillus spp., showed higher abundance in the caries group compared to the caries-free group (p<0.05). The core microbiota at the genus and species levels was more stable in the caries-free micro-ecological niche. At follow-up, oral examinations 6 months after sample collection, development of new dental caries was observed in 5 children (the transitional group) among the 21 caries free children. Compared with the caries-free children, in the transitional and caries groups, 6 species, which were more abundant in the caries-free group, exhibited a relatively low abundance in both the caries group and the transitional group (p<0.05). We conclude that Abiotrophia spp., Neisseria spp. and Veillonella spp., are essential for maintaining a healthy oral microbial ecosystem. Prevotella spp., Lactobacillus spp., Dialister spp. and Filifactor spp. may be related to the pathogenesis and progression of dental caries.


September 22, 2019  |  

Comprehensive exploration of the rumen microbial ecosystem with advancements in metagenomics

Ruminant farming and its environmental impact has long remained an economic concern. Metagenomics unravel the vast structural and functional diversity of the rumen microbial community that plays a major role in animal nutrition. Hereby, we summarize rumen metagenomic studies that have enhanced the knowledge of rumen microbe dynamics subsequently leading to development of better feed strategies to improve livestock production and reduce methane emissions.


September 22, 2019  |  

Molecular characterization of eukaryotic algal communities in the tropical phyllosphere based on real-time sequencing of the 18S rDNA gene.

Foliicolous algae are a common occurrence in tropical forests. They are referable to a few simple morphotypes (unicellular, sarcinoid-like or filamentous), which makes their morphology of limited usefulness for taxonomic studies and species diversity assessments. The relationship between algal community and their host phyllosphere was not clear. In order to obtain a more accurate assessment, we used single molecule real-time sequencing of the 18S rDNA gene to characterize the eukaryotic algal community in an area of South-western China.We annotated 2922 OTUs belonging to five classes, Ulvophyceae, Trebouxiophyceae, Chlorophyceae, Dinophyceae and Eustigmatophyceae. Novel clades formed by large numbers sequences of green algae were detected in the order Trentepohliales (Ulvophyceae) and the Watanabea clade (Trebouxiophyceae), suggesting that these foliicolous communities may be substantially more diverse than so far appreciated and require further research. Species in Trentepohliales, Watanabea clade and Apatococcus clade were detected as the core members in the phyllosphere community studied. Communities from different host trees and sampling sites were not significantly different in terms of OTUs composition. However, the communities of Musa and Ravenala differed from other host plants significantly at the genus level, since they were dominated by Trebouxiophycean epiphytes.The cryptic diversity of eukaryotic algae especially Chlorophytes in tropical phyllosphere is very high. The community structure at species-level has no significant relationship either with host phyllosphere or locations. The core algal community in tropical phyllopshere is consisted of members from Trentepohliales, Watanabea clade and Apatococcus clade. Our study provided a large amount of novel 18S rDNA sequences that will be useful to unravel the cryptic diversity of phyllosphere eukaryotic algae and for comparisons with similar future studies on this type of communities.


September 22, 2019  |  

Clinical PathoScope: rapid alignment and filtration for accurate pathogen identification in clinical samples using unassembled sequencing data.

The use of sequencing technologies to investigate the microbiome of a sample can positively impact patient healthcare by providing therapeutic targets for personalized disease treatment. However, these samples contain genomic sequences from various sources that complicate the identification of pathogens.Here we present Clinical PathoScope, a pipeline to rapidly and accurately remove host contamination, isolate microbial reads, and identify potential disease-causing pathogens. We have accomplished three essential tasks in the development of Clinical PathoScope. First, we developed an optimized framework for pathogen identification using a computational subtraction methodology in concordance with read trimming and ambiguous read reassignment. Second, we have demonstrated the ability of our approach to identify multiple pathogens in a single clinical sample, accurately identify pathogens at the subspecies level, and determine the nearest phylogenetic neighbor of novel or highly mutated pathogens using real clinical sequencing data. Finally, we have shown that Clinical PathoScope outperforms previously published pathogen identification methods with regard to computational speed, sensitivity, and specificity.Clinical PathoScope is the only pathogen identification method currently available that can identify multiple pathogens from mixed samples and distinguish between very closely related species and strains in samples with very few reads per pathogen. Furthermore, Clinical PathoScope does not rely on genome assembly and thus can more rapidly complete the analysis of a clinical sample when compared with current assembly-based methods. Clinical PathoScope is freely available at: http://sourceforge.net/projects/pathoscope/.


September 22, 2019  |  

A microbial clock provides an accurate estimate of the postmortem interval in a mouse model system.

Establishing the time since death is critical in every death investigation, yet existing techniques are susceptible to a range of errors and biases. For example, forensic entomology is widely used to assess the postmortem interval (PMI), but errors can range from days to months. Microbes may provide a novel method for estimating PMI that avoids many of these limitations. Here we show that postmortem microbial community changes are dramatic, measurable, and repeatable in a mouse model system, allowing PMI to be estimated within approximately 3 days over 48 days. Our results provide a detailed understanding of bacterial and microbial eukaryotic ecology within a decomposing corpse system and suggest that microbial community data can be developed into a forensic tool for estimating PMI. DOI:http://dx.doi.org/10.7554/eLife.01104.001.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.