Menu
June 1, 2021  |  

Immune regions are no longer incomprehensible with SMRT Sequencing

The complex immune regions of the genome, including MHC and KIR, contain large copy number variants (CNVs), a high density of genes, hyper-polymorphic gene alleles, and conserved extended haplotypes (CEH) with enormous linkage disequilibrium (LDs). This level of complexity and inherent biases of short-read sequencing make it challenging for extracting immune region haplotype information from reference-reliant, shotgun sequencing and GWAS methods. As NGS based genome and exome sequencing and SNP arrays have become a routine for population studies, numerous efforts are being made for developing software to extract and or impute the immune gene information from these datasets. Despite these efforts, the fine mapping of causal variants of immune genes for their well-documented association with cancer, drug-induced hypersensitivity and immune-related diseases, has been slower than expected. This has in many ways limited our understanding of the mechanisms leading to immune disease. In the present work, we demonstrate the advantages of long reads delivered by SMRT Sequencing for assembling complete haplotypes of MHC and KIR gene clusters, as well as calling correct genotypes of genes comprised within them. All the genotype information is detected at allele- level with full phasing information across SNP-poor regions. Genotypes were called correctly from targeted gene amplicons, haplotypes, as well as from a completely assembled 5 Mb contig of the MHC region from a de novo assembly of whole genome shotgun data. De novo analysis pipeline used in all these approaches allowed for reference-free analysis without imputation, a key for interrogation without prior knowledge about ethnic backgrounds. These methods are thus easily adoptable for previously uncharacterized human or non-human species.


April 21, 2020  |  

Patterns of non-ARD variation in more than 300 full-length HLA-DPB1 alleles.

Our understanding of sequence variation in the HLA-DPB1 gene is largely restricted to the hypervariable antigen recognition domain (ARD) encoded by exon 2. Here, we employed a redundant sequencing strategy combining long-read and short-read data to accurately phase and characterise in full length the majority of common and well-documented (CWD) DPB1 alleles as well as alleles with an observed frequency of at least 0.0006% in our predominantly European sample set. We generated 664 DPB1 sequences, comprising 279 distinct allelic variants. This allows us to present the, to date, most comprehensive analysis of the nature and extent of DPB1 sequence variation. The full-length sequence analysis revealed the existence of two highly diverged allele clades. These clades correlate with the rs9277534 A???G variant, a known expression marker located in the 3′-UTR. The two clades are fully differentiated by 174 fixed polymorphisms throughout a 3.6?kb stretch at the 3′-end of DPB1. The region upstream of this differentiation zone is characterised by increasingly shared variation between the clades. The low-expression A clade comprises 59% of the distinct allelic sequences including the three by far most frequent DPB1 alleles, DPB1*04:01, DPB1*02:01 and DPB1*04:02. Alleles in the A clade show reduced nucleotide diversity with an excess of rare variants when compared to the high-expression G clade. This pattern is consistent with a scenario of recent proliferation of A-clade alleles. The full-length characterisation of all but the most rare DPB1 alleles will benefit the application of NGS for DPB1 genotyping and provides a helpful framework for a deeper understanding of high- and low-expression alleles and their implications in the context of unrelated haematopoietic stem-cell transplantation.Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.


April 21, 2020  |  

Platanus-allee is a de novo haplotype assembler enabling a comprehensive access to divergent heterozygous regions.

The ultimate goal for diploid genome determination is to completely decode homologous chromosomes independently, and several phasing programs from consensus sequences have been developed. These methods work well for lowly heterozygous genomes, but the manifold species have high heterozygosity. Additionally, there are highly divergent regions (HDRs), where the haplotype sequences differ considerably. Because HDRs are likely to direct various interesting biological phenomena, many genomic analysis targets fall within these regions. However, they cannot be accessed by existing phasing methods, and we have to adopt costly traditional methods. Here, we develop a de novo haplotype assembler, Platanus-allee ( http://platanus.bio.titech.ac.jp/platanus2 ), which initially constructs each haplotype sequence and then untangles the assembly graphs utilizing sequence links and synteny information. A comprehensive benchmark analysis reveals that Platanus-allee exhibits high recall and precision, particularly for HDRs. Using this approach, previously unknown HDRs are detected in the human genome, which may uncover novel aspects of genome variability.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.