July 7, 2019  |  

Complete genome sequence of WM99c, an antibiotic-resistant Acinetobacter baumannii global clone 2 (GC2) strain representing an Australian GC2 lineage.

The extensively antibiotic-resistant Acinetobacter baumannii isolate WM99c recovered in Sydney, Australia, in 1999 is an early representative of a distinct lineage of global clone 2 (GC2) seen on the east coast of Australia. We present the complete 4.121-Mbp genome sequence (chromosome plus 2 plasmids), generated via long-read sequencing (PacBio).


July 7, 2019  |  

Deciphering mixotrophic Clostridium formicoaceticum metabolism and energy conservation: Genomic analysis and experimental studies.

Clostridium formicoaceticum, a Gram-negative mixotrophic homoacetogen, produces acetic acid as the sole metabolic product from various carbon sources, including fructose, glycerol, formate, and CO2. Its genome of 4.59-Mbp contains a highly conserved Wood-Ljungdahl pathway gene cluster with the same layout as that in other mixotrophic acetogens, including Clostridium aceticum, Clostridium carboxidivorans, and Clostridium ljungdahlii. For energy conservation, C. formicoaceticum does not have all the genes required for the synthesis of cytochrome or quinone used for generating proton gradient in H+-dependent acetogens such as Moorella thermoacetica; instead, it has the Rnf system and a Na+-translocating ATPase similar to the one in Acetobacterium woodii. Its growth in both heterotrophic and autotrophic media were dependent on the sodium concentration. C. formicoaceticum has genes encoding acetaldehyde dehydrogenases, alcohol dehydrogenases, and aldehyde oxidoreductases, which could convert acetyl-CoA and acetate to ethanol and butyrate to butanol under excessive reducing equivalent conditions. Copyright © 2018 Elsevier Inc. All rights reserved.


July 7, 2019  |  

Whole-genome sequencing of an NDM-1- and OXA-58-producing Acinetobacter towneri isolate from hospital sewage in Sichuan Province, China.

Acinetobacter spp. isolates carrying the blaNDM-1 gene are frequently reported. However, most reported blaNDM-1 genes are carried by clinical strains. Here we report a carbapenem-resistant Acinetobacter towneri isolate from hospital sewage in China co-harbouring blaNDM-1 and blaOXA-58 in the genome.Whole-genome sequencing was performed using a single molecule, real-time (SMRT) sequencing platform with a Pacific Biosciences RS II Sequencer and MiSeq system. Reads were de novo assembled using Celera Assembler v.8.0. Genome annotation was performed using the NCBI Prokaryotic Genome Annotation Pipeline (PGAP), and the genome sequence was analysed by bioinformatics methods.The 2963729-bp genome with a G+C content of 41.30% displayed 11 antimicrobial resistance genes, including blaNDM-1 and blaOXA-58. Meanwhile, 2 plasmids and 19 genomic islands were predicted within the genome.The whole-genome sequence reported here can be compared with other genomes of NDM-1-producing Acinetobacter spp. These data could facilitate further understanding of the specific genomic features of carbapenem-resistant Acinetobacter spp. in China. Copyright © 2018 International Society for Chemotherapy of Infection and Cancer. Published by Elsevier Ltd. All rights reserved.


July 7, 2019  |  

The gold-standard genome of Aspergillus niger NRRL 3 enables a detailed view of the diversity of sugar catabolism in fungi.

The fungal kingdom is too large to be discovered exclusively by classical genetics. The access to omics data opens a new opportunity to study the diversity within the fungal kingdom and how adaptation to new environments shapes fungal metabolism. Genomes are the foundation of modern science but their quality is crucial when analysing omics data. In this study, we demonstrate how one gold-standard genome can improve functional prediction across closely related species to be able to identify key enzymes, reactions and pathways with the focus on primary carbon metabolism. Based on this approach we identified alternative genes encoding various steps of the different sugar catabolic pathways, and as such provided leads for functional studies into this topic. We also revealed significant diversity with respect to genome content, although this did not always correlate to the ability of the species to use the corresponding sugar as a carbon source.


July 7, 2019  |  

Methanogenic and bacterial endosymbionts of free-living anaerobic ciliates

Trimyema compressum thrives in anoxic freshwater environments in which it preys on bacteria and grows with fermentative metabolisms. Like many anaerobic protozoa, instead of mitochondria, T. compressum possess hydrogenosomes, which are hydrogen-producing, energy-generating organelles characteristic of anaerobic protozoa and fungi. The cytoplasm of T. compressum harbours hydrogenotrophic methanogens that consume the hydrogen produced by hydrogenosome, which confers an energetic advantage to the host ciliate. Symbiotic associations between methanogenic archaea and Trimyema ciliates are thought to be established independently and/or repeatedly in their evolutional history. In addition to methanogenic symbionts, T. compressum houses bacterial symbiont TC1 whose function is unknown in its cytoplasm. Recently, we analysed whole-genome sequence of TC1 symbiont to investigate its physiological function in the tripartite symbiosis and found that fatty acid synthesis fab operon of TC1 symbiont lacked typical transcriptional repressor, which is normally coded on the upstream of the fab operon. The sequence data suggested that TC1 symbiont contributes to host Trimyema by the synthesis of fatty acid or its derivative. In this review, we summarize the early works and recent progress of the studies on Trimyema ciliates, including a stably cultivable model protozoa T. compressum, and discuss about symbiotic associations in oxygen-scarce environments.


July 7, 2019  |  

Complete genome sequence of Streptacidiphilus sp. strain 15-057A, obtained from bronchial lavage fluid.

Streptacidiphilus sp. strain 15-057A was isolated from a bronchial lavage sample and represents the only member of the genus not isolated from acidic soils. A single circular chromosome of 7.01?Mb was obtained by combining Illumina and PacBio sequencing data. Bioinformatic analysis detected 63 putative secondary biosynthetic gene clusters and recognized 43 transposons.


July 7, 2019  |  

Complete genome sequence of Sulfitobacter sp. strain D7, a virulent bacterium isolated from an Emiliania huxleyi algal bloom in the North Atlantic.

A Rhodobacterales bacterium, Sulfitobacter sp. strain D7, was isolated from an Emiliania huxleyi bloom in the North Atlantic and has been shown to act as a pathogen and induce cell death of E. huxleyi during lab coculturing. We report here its complete genome sequence comprising one chromosome and five low-copy-number plasmids.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.