Menu
July 7, 2019  |  

Complete genome sequence of the Arcobacter marinus type strain JCM 15502.

Arcobacter species are often recovered from marine environments and are isolated from both seawater and shellfish. Arcobacter marinus was recovered from the homogenate of a sample containing surface seawater, seaweed, and a star- fish. This study describes the whole-genome sequence of the A. marinus type strain JCM 15502 (= CL-S1T = KCCM 90072T).


July 7, 2019  |  

Complete genome sequence of lanthionine-producing Lactobacillus brevis strain 100D8, generated by PacBio sequencing.

Lactobacillus brevis strain 100D8 was isolated from rye silage and showed rapid acidification ability in vitro and antifungal activity against mycotoxin- producing fungi. We report here the complete genome sequence of L. brevis strain 100D8, which has a circular chromosome (2,351,988 bp, 2,304 coding sequences [CDSs]) and three plasmids (45,061 bp, 57 CDSs; 40,740 bp, 40 CDSs; and 39,943 bp, 57 CDSs).


July 7, 2019  |  

Genome analysis of Vallitalea guaymasensis strain L81 isolated from a deep-sea hydrothermal vent system.

Abyssivirga alkaniphila strain L81T, recently isolated from a black smoker biofilm at the Loki’s Castle hydrothermal vent field, was previously described as a mesophilic, obligately anaerobic heterotroph able to ferment carbohydrates, peptides, and aliphatic hydrocarbons. The strain was classified as a new genus within the family Lachnospiraceae. Herein, its genome is analyzed and A. alkaniphila is reassigned to the genus Vallitalea as a new strain of V. guaymasensis, designated V. guaymasensis strain L81. The 6.4 Mbp genome contained 5651 protein encoding genes, whereof 4043 were given a functional prediction. Pathways for fermentation of mono-saccharides, di-saccharides, peptides, and amino acids were identified whereas a complete pathway for the fermentation of n-alkanes was not found. Growth on carbohydrates and proteinous compounds supported methane production in co-cultures with Methanoplanus limicola. Multiple confurcating hydrogen-producing hydrogenases, a putative bifurcating electron-transferring flavoprotein—butyryl-CoA dehydrogenase complex, and a Rnf-complex form a basis for the observed hydrogen-production and a putative reverse electron-transport in V. guaymasensis strain L81. Combined with the observation that n-alkanes did not support growth in co-cultures with M. limicola, it seemed more plausible that the previously observed degradation patterns of crude-oil in strain L81 are explained by unspecific activation and may represent a detoxification mechanism, representing an interesting ecological function. Genes encoding a capacity for polyketide synthesis, prophages, and resistance to antibiotics shows interactions with the co-occurring microorganisms. This study enlightens the function of the fermentative microorganisms from hydrothermal vents systems and adds valuable information on the bioprospecting potential emerging in deep-sea hydrothermal systems.


July 7, 2019  |  

Complete genome sequence of the Arcobacter molluscorum type strain LMG 25693.

As components of freshwater and marine microflora, Arcobacter spp. are often recovered from shellfish, such as mussels, clams, and oysters. Arcobacter mol- luscorum was isolated from mussels from the Ebro Delta in Catalonia, Spain. This ar- ticle describes the whole-genome sequence of the A. molluscorum strain LMG 25693T(= F98-3T= CECT 7696T).


July 7, 2019  |  

Genetic structure of four plasmids found in Acinetobacter baumannii isolate D36 belonging to lineage 2 of global clone 1.

Four plasmids ranging in size from 4.7 to 44.7 kb found in the extensively antibiotic resistant Acinetobacter baumannii isolate D36 that belongs to lineage 2 of global clone 1 were examined. D36 includes two cryptic plasmids and two carrying antibiotic resistance genes. The smallest plasmid pD36-1 (4.7 kb) carries no resistance genes but includes mobA and mobC mobilisation genes related to those found in pRAY* (pD36-2, 6,078 bp) that also carries the aadB gentamicin, kanamycin and tobramycin resistance gene cassette. These two plasmids do not encode a Rep protein. Plasmid pRAY* was found to be mobilised at high frequency by the large conjugative plasmid pA297-3 but a pRAY* derivative lacking the mobA and mobC genes was not. The two larger plasmids, pD36-3 and pD36-4, encode Rep_3 family proteins (Pfam1051). The cryptic plasmid pD36-3 (6.2 kb) has RepAci1 and pD36-4 (44.7 kb) encodes two novel Rep_3 family proteins suggesting a co-integrate. Plasmid pD36-4 includes the sul2 sulfonamide resistance gene, the aphA1a kanamycin/neomycin resistance gene in Tn4352::ISAba1 and a mer module in a hybrid Tn501/Tn1696 transposon conferring resistance to mercuric ions. New examples of dif modules flanked by pdif sites (XerC-XerD binding sites) that are part of many A. baumannii plasmids were also identified in pD36-3 and pD36-4 which carry three and two dif modules, respectively. Homologs of three dif modules, the sup sulphate permease module in pD36-3, and of the abkAB toxin-antitoxin module and the orf module in pD36-4, were found in different contexts in diverse Acinetobacter plasmids, consistent with module mobility. A novel insertion sequence named ISAba32 found next to the pdif site in the abkAB dif module is related to members of the ISAjo2 group which also are associated with the pdif sites of dif modules. Plasmids found in D36 were also found in some other members of GC1 lineage 2.


July 7, 2019  |  

Complete genome sequence of Arcticibacterium luteifluviistationis SM1504 T, a cytophagaceae bacterium isolated from Arctic surface seawater

Arcticibacterium luteifluviistationis SM1504Twas isolated from Arctic surface seawater and classified as a novel genus of the phylum Bacteroides. To date, no Arcticibacterium genomes have been reported, their genomic compositions and metabolic features are still unknown. Here, we reported the complete genome sequence of A. luteifluviistationis SM1504T, which comprises 5,379,839bp with an average GC content of 37.20%. Genes related to various stress (such as radiation, osmosis and antibiotics) resistance and gene clusters coding for carotenoid and flexirubin biosynthesis were detected in the genome. Moreover, the genome contained a 245-kb genomic island and a 15-kb incomplete prophage region. A great percentage of proteins belonging to carbohydrate metabolism especially in regard to polysaccharides utilization were found. These related genes and metabolic characteristics revealed genetic basis for adapting to the diverse extreme Arctic environments. The genome sequence of A. luteifluviistationis SM1504Talso implied that the genus Arcticibacterium may act as a vital organic carbon matter decomposer in the Arctic seawater ecosystem.


July 7, 2019  |  

Genome-wide characterization and phylogenetic analysis of GSK gene family in three species of cotton: evidence for a role of some GSKs in fiber development and responses to stress

Background: The glycogen synthase kinase 3/shaggy kinase (GSK3) is a serine/threonine kinase with important roles in animals. Although GSK3 genes have been studied for more than 30years, plant GSK genes have been studied only since the last decade. Previous research has confirmed that plant GSK genes are involved in diverse processes, including floral development, brassinosteroid signaling, and responses to abiotic stresses. Result: In this study, 20, 15 (including 5 different transcripts) and 10 GSK genes were identified in G. hirsutum, G. raimondii and G. arboreum, respectively. A total of 65 genes from Arabidopsis, rice, and cotton were classified into 4 clades. High similarities were found in GSK3 protein sequences, conserved motifs, and gene structures, as well as good concordance in gene pairwise comparisons (G. hirsutum vs. G. arboreum, G. hirsutum vs. G. raimondii, and G. arboreum vs. G. raimondii) were observed. Whole genome duplication (WGD) within At and Dt sub-genomes has been central to the expansion of the GSK gene family. Furthermore, GhSK genes showed diverse expression patterns in various tissues. Additionally, the expression profiles of GhSKs under different stress treatments demonstrated that many are stress-responsive genes. However, none were induced by brassinolide treatment. Finally, nine co-expression sub- networks were observed for GhSKs and the functional annotations of these genes suggested that some GhSKs might be involved in cotton fiber development. Conclusion: In this present work, we identified 45 GSK genes from three cotton species, which were divided into four clades. The gene features, muti-alignment, conversed motifs, and syntenic blocks indicate that they have been highly conserved during evolution. Whole genome duplication was determined to be the dominant factor for GSK gene family expansion. The analysis of co-expressed sub-networks and tissue-specific expression profiles suggested functions of GhSKs during fiber development. Moreover, their different responses to various abiotic stresses indicated great functional diversity amongst the GhSKs. Briefly, data presented herein may serve as the basis for future functional studies of GhSKs.


July 7, 2019  |  

Genome analysis of Mycobacterium avium subspecies hominissuis strain 109.

Infection with Mycobacterium avium is a significant cause of morbidity and its treatment requires the use of multiple antibiotics for more than 12 months. In the current work, we provide the genome sequence, gene annotations, gene ontology annotations, and protein homology data for M. avium strain 109 (MAC109), which has been used extensively in preclinical studies. The de novo assembled genome consists of a circular chromosome of length 5,188,883?bp and two circular plasmids of sizes 147,100?bp and 16,516?bp. We have named the plasmids pMAC109a and pMAC109b, respectively. Based on its genome, we confirm that MAC109 should be classified as Mycobacterium avium subsp. hominissuis. Using genome annotation software, we identified 4,841 coding sequences and annotated these with Gene Ontology (GO) terms. Additionally, we wrote software to generate a database of homologous proteins among MAC109 and eight other commonly used mycobacterial laboratory strains. The resulting database may be useful for translating genetic data between various strains of mycobacteria, and the software may be applied readily to other organisms.


July 7, 2019  |  

Complete genome sequence of the Arcobacter suis type strain LMG 26152.

Arcobacter species are prevalent in pigs, and strains have been isolated from pig feces and pork meat; some Arcobacter strains may be porcine abortifacients. Arcobacter suis was recovered from pork meat in Spain. This study describes the whole-genome sequence of the A. suis type strain LMG 26152 (=F41T =CECT 7833T).


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.