The UK’s National Collection of Type Cultures (NCTC) is a unique collection of more than 5,000 expertly preserved and authenticated bacterial cultures, many of historical significance. Founded in 1920, NCTC is the longest established collection of its type anywhere in the world, with a history of its own that has reflected — and contributed to — the evolution of microbiology for more than 100 years.
Our understanding of microbiology has evolved enormously over the last 150 years. Few institutions have witnessed our collective progress more closely than the National Collection of Type Cultures (NCTC). In fact, the collection itself is a record of the many milestones microbiologists have crossed, building on the discoveries of those who came before. To date, 60% of NCTC’s historic collection now has a closed, finished reference genome, thanks to PacBio Single Molecule, Real- Time (SMRT) Sequencing. We are excited to be their partner in crossing this latest milestone on their quest to improve human and animal health by understanding the…
With Single Molecule, Real-Time (SMRT) Sequencing and the Sequel Systems, you can affordably assemble reference-quality microbial genomes that are >99.999% (Q50) accurate.
Highly accurate long reads – HiFi reads – with single-molecule resolution make Single Molecule, Real-Time (SMRT) Sequencing ideal for full-length 16S rRNA sequencing, shotgun metagenomic profiling, and metagenome assembly.
The Sequel II and IIe Systems are powered by Single Molecule, Real-Time (SMRT) Sequencing, a technology proven to produce highly accurate long reads, known as HiFi reads, for sequencing data you and your customers can trust.
PacBio Sequencing is characterized by very long sequence reads (averaging > 10,000 bases), lack of GC-bias, and high consensus accuracy. These features have allowed the method to provide a new gold standard in de novo genome assemblies, producing highly contiguous (contig N50 > 1 Mb) and accurate (> QV 50) genome assemblies. We will briefly describe the technology and then highlight the full workflow, from sample preparation through sequencing to data analysis, on examples of insect genome assemblies, and illustrate the difference these high-quality genomes represent with regard to biological insights, compared to fragmented draft assemblies generated by short-read sequencing.
In this AGBT 2017 poster, the University of Helsinki’s Petri Auevinen reports on efforts to understand bacteria that grow on, and subsequently spoil, food. This analysis monitored DNA modifications and transcriptomic changes in three species of lactic acid bacteria. Scientists discovered that the organisms’ metabolic profiles change substantially when grown together compared to those cultured individually, and are now studying how Cas protein activity changes under these conditions too.
At AGBT 2017, Lars Paulin from the University of Helsinki presented this poster on whole genome sequencing of the virus responsible for progressive multifocal leukoencephalopathy, a rare and dangerous brain infection. His team used long amplicon analysis to resolve the whole virus genome from three patient samples, pooled them for SMRT Sequencing, and identified variants and rearrangements. This work represents the first time the viral genome was sequenced from patients.
To start Day 2 of the PacBio User Group Meeting, Jonas Korlach, PacBio CSO, provides an update on lowering DNA input amounts for SMRT Sequencing workflows. Updates include a more robust shearing method, a revised AMPure size selection, and introduction of multiplexing low input samples. Finally, the use of HiFi sequencing with low input results in a more complete genome assembly. Jonas closes by mentioning that the low DNA input protocol is now available and further advancements to lower input requirements even more will open opportunities for different samples, such as cancer needle biopsies.
Understanding interactions among plants and the complex communities of organisms living on, in and around them requires more than one experimental approach. A new method for de novo metagenome assembly, PacBio HiFi sequencing, has unique strengths for determining the functional capacity of metagenomes. With HiFi sequencing, the accuracy and median read length of unassembled data outperforms the quality metrics for many existing assemblies generated with other technologies, enabling cost-competitive recovery of full-length genes and operons even from rare species. When paired with the ability to close the genomes of even challenging isolates like Xanthomonas, the PacBio Sequel II System is…
In this webinar, Kristin Mars, Sequencing Specialist, PacBio, presents an introduction to PacBio’s technology and its applications followed by a panel discussion among sequencing experts. The panel discussion addresses such things as what long reads are and how are they useful, what differentiates PacBio long-read sequencing from other technologies, and the applications PacBio offers and how they can benefit scientific research.
Microbial Assembly is our latest pipeline, specifically designed to assemble bacterial genomes (between 2 and 10 Mb) and plasmids. This pipeline includes the implementation of a new, circular-aware read alignment tool (Raptor), among other algorithmic improvements, which will be covered in this webinar. The topics covered include, staged assembly of bacterial chromosomes and plasmids, implementation of Raptor, a circular-aware read aligner, himeric read detection, origin of replication orientation, troubleshooting and more.
Hear how scientists have used PacBio sequencing to develop pangenome collections and to study population genetics of plant and animal species to power their research. Learn about the advantages of sequencing multiple individuals to gain comprehensive views of genetic variation, and understand the speed, cost, and accuracy benefits of using highly accurate long reads (HiFi reads) to sequence your species of interest.
Bacterial Vaginosis Associated bacterium 1 (BVAB1) is an as-yet uncultured bacterial species found in the human vagina that belongs to the family Lachnospiraceae within the order Clostridiales. As its name suggests, this bacterium is often associated with bacterial vaginosis (BV), a common vaginal disorder that has been shown to increase a woman’s risk for HIV, Chlamydia trachomatis, and Neisseria gonorrhoeae infections as well as preterm birth. Further, BVAB1 is associated with the persistence of BV following metronidazole treatment, increased vaginal inflammation, and adverse obstetrics outcomes. There is no available complete genome sequence of BVAB1, which has made it di?cult to…
Clavibacter michiganensis subsp. michiganensis (Cmm) is a gram positive actinomycete, causing bacterial canker of tomato (Solanum lycopersicum) a disease that can cause significant losses in tomato production. In this study, we determined the complete genome sequence of 13 California Cmm strains and one saprophytic Clavibacter strain using a combination of Ilumina and PacBio sequencing. The California Cmm strains have genome size (3.2 -3.3 mb) similar to the reference strain NCPPB382 (3.3 mb) with =98% sequence identity. Cmm strains from California share =92% genes (8-10% are noble genes) with the reference Cmm strain NCPPB382. Despite this similarity, we detected significant alternatives…