Menu
September 22, 2019  |  

Draft genome of Glyptosternon maculatum, an endemic fish from Tibet Plateau.

Mechanisms for high-altitude adaption have attracted widespread interest among evolutionary biologists. Several genome-wide studies have been carried out for endemic vertebrates in Tibet, including mammals, birds, and amphibians. However, little information is available about the adaptive evolution of highland fishes. Glyptosternon maculatum (Regan 1905), also known as Regan or barkley and endemic to the Tibetan Plateau, belongs to the Sisoridae family, order Siluriformes (catfishes). This species lives at an elevation ranging from roughly 2,800 m to 4,200 m. Hence, a high-quality reference genome of G. maculatum provides an opportunity to investigate high-altitude adaption mechanisms of fishes.To obtain a high-quality reference genome sequence of G. maculatum, we combined Pacific Bioscience single-molecule real-time sequencing, Illumina paired-end sequencing, 10X Genomics linked-reads, and BioNano optical map techniques. In total, 603.99 Gb sequencing data were generated. The assembled genome was about 662.34 Mb with scaffold and contig N50 sizes of 20.90 Mb and 993.67 kb, respectively, which captured 83% complete and 3.9% partial vertebrate Benchmarking Universal Single-Copy Orthologs. Repetitive elements account for 35.88% of the genome, and ?22,066 protein-coding genes were predicted from the genome, of which 91.7% have been functionally annotated.We present the first comprehensive de novo genome of G. maculatum. This genetic resource is fundamental for investigating the origin of G. maculatum and will improve our understanding of high-altitude adaption of fishes. The assembled genome can also be used as reference for future population genetic studies of G. maculatum.


September 22, 2019  |  

Complete genome sequencing and analysis of endophytic Sphingomonas sp. LK11 and its potential in plant growth.

Our study aimed to elucidate the plant growth-promoting characteristics and the structure and composition of Sphingomonas sp. LK11 genome using the single molecule real-time (SMRT) sequencing technology of Pacific Biosciences. The results revealed that LK11 produces different types of gibberellins (GAs) in pure culture and significantly improves soybean plant growth by influencing endogenous GAs compared with non-inoculated control plants. Detailed genomic analyses revealed that the Sphingomonas sp. LK11 genome consists of a circular chromosome (3.78 Mbp; 66.2% G+C content) and two circular plasmids (122,975 bps and 34,160 bps; 63 and 65% G+C content, respectively). Annotation showed that the LK11 genome consists of 3656 protein-coding genes, 59 tRNAs, and 4 complete rRNA operons. Functional analyses predicted that LK11 encodes genes for phosphate solubilization and nitrate/nitrite ammonification, which are beneficial for promoting plant growth. Genes for production of catalases, superoxide dismutase, and peroxidases that confer resistance to oxidative stress in plants were also identified in LK11. Moreover, genes for trehalose and glycine betaine biosynthesis were also found in LK11 genome. Similarly, Sphingomonas spp. analysis revealed an open pan-genome and a total of 8507 genes were identified in the Sphingomonas spp. pan-genome and about 1356 orthologous genes were found to comprise the core genome. However, the number of genomes analyzed was not enough to describe complete gene sets. Our findings indicated that the genetic makeup of Sphingomonas sp. LK11 can be utilized as an eco-friendly bioresource for cleaning contaminated sites and promoting growth of plants confronted with environmental perturbations.


September 22, 2019  |  

The genome of tapeworm Taenia multiceps sheds light on understanding parasitic mechanism and control of coenurosis disease.

Coenurosis, caused by the larval coenurus of the tapeworm Taenia multiceps, is a fatal central nervous system disease in both sheep and humans. Though treatment and prevention options are available, the control of coenurosis still faces presents great challenges. Here, we present a high-quality genome sequence of T. multiceps in which 240 Mb (96%) of the genome has been successfully assembled using Pacbio single-molecule real-time (SMRT) and Hi-C data with a N50 length of 44.8 Mb. In total, 49.5 Mb (20.6%) repeat sequences and 13, 013 gene models were identified. We found that Taenia spp. have an expansion of transposable elements and recent small-scale gene duplications following the divergence of Taenia from Echinococcus, but not in Echinococcus genomes, and the genes underlying environmental adaptability and dosage effect tend to be over-retained in the T. multiceps genome. Moreover, we identified several genes encoding proteins involved in proglottid formation and interactions with the host central nervous system, which may contribute to the adaption of T. multiceps to its parasitic life style. Our study not only provides insights into the biology and evolution of T. multiceps, but also identifies a set of species-specific gene targets for developing novel treatment and control tools for coenurosis.


September 22, 2019  |  

Insight into metabolic versatility of an aromatic compounds-degrading Arthrobacter sp. YC-RL1.

The genus Arthrobacter is ubiquitously distributed in different natural environments. Many xenobiotic-degrading Arthrobacter strains have been isolated and described; however, few have been systematically characterized with regard to multiple interrelated metabolic pathways and the genes that encode them. In this study, the biodegradability of seven aromatic compounds by Arthrobacter sp. YC-RL1 was investigated. Strain YC-RL1 could efficiently degrade p-xylene (PX), naphthalene, phenanthrene, biphenyl, p-nitrophenol (PNP), and bisphenol A (BPA) under both separated and mixed conditions. Based on the detected metabolic intermediates, metabolic pathways of naphthalene, biphenyl, PNP, and BPA were proposed, which indicated that strain YC-RL1 harbors systematic metabolic pathways toward aromatic compounds. Further, genomic analysis uncovered part of genes involved in the proposed pathways. Both intradiol and extradiol ring-cleavage dioxygenase genes were identified in the genome of strain YC-RL1. Meanwhile, gene clusters predicted to encode the degradation of biphenyl (bph), para-substituted phenols (npd) and protocatechuate (pca) were identified, and bphA1A2BCD was proposed to be a novel biphenyl-degrading gene cluster. The complete metabolic pathway of biphenyl was deduced via intermediates and functional gene analysis (bph and pca gene clusters). One of the these genes encoding ring-cleavage dioxygenase in bph gene cluster, a predicted 2,3-dihydroxybiphenyl 1,2-dioxygenase (BphC) gene, was cloned and its activity was confirmed by heterologous expression. This work systematically illuminated the metabolic versatility of aromatic compounds in strain YC-RL1 via the combination of metabolites identification, genomics analysis and laboratory experiments. These results suggested that strain YC-RL1 might be a promising candidate for the bioremediation of aromatic compounds pollution sites.


September 22, 2019  |  

Functional genomic analysis of phthalate acid ester (PAE) catabolism genes in the versatile PAE-mineralising bacterium Rhodococcus sp. 2G.

Microbial degradation is considered the most promising method for removing phthalate acid esters (PAEs) from polluted environments; however, a comprehensive genomic understanding of the entire PAE catabolic process is still lacking. In this study, the repertoire of PAE catabolism genes in the metabolically versatile bacterium Rhodococcus sp. 2G was examined using genomic, metabolic, and bioinformatic analyses. A total of 4930 coding genes were identified from the 5.6?Mb genome of the 2G strain, including 337 esterase/hydrolase genes and 48 transferase and decarboxylase genes that were involved in hydrolysing PAEs into phthalate acid (PA) and decarboxylating PA into benzoic acid (BA). One gene cluster (xyl) responsible for transforming BA into catechol and two catechol-catabolism gene clusters controlling the ortho (cat) and meta (xyl &mhp) cleavage pathways were also identified. The proposed PAE catabolism pathway and some key degradation genes were validated by intermediate-utilising tests and real-time quantitative polymerase chain reaction. Our results provide novel insight into the mechanisms of PAE biodegradation at the molecular level and useful information on gene resources for future studies. Copyright © 2018 Elsevier B.V. All rights reserved.


September 22, 2019  |  

Genomic characterization reveals significant divergence within Chlorella sorokiniana (Chlorellales, Trebouxiophyceae)

Selection of highly productive algal strains is crucial for establishing economically viable biomass and biopro- duct cultivation systems. Characterization of algal genomes, including understanding strain-specific differences in genome content and architecture is a critical step in this process. Using genomic analyses, we demonstrate significant differences between three strains of Chlorella sorokiniana (strain 1228, UTEX 1230, and DOE1412). We found that unique, strain-specific genes comprise a substantial proportion of each genome, and genomic regions with> 80% local nucleotide identity constitute <15% of each genome among the strains, indicating substantial strain specific evolution. Furthermore, cataloging of meiosis and other sex-related genes in C. sor- okiniana strains suggests strategic breeding could be utilized to improve biomass and bioproduct yields if a sexual cycle can be characterized. Finally, preliminary investigation of epigenetic machinery suggests the pre- sence of potentially unique transcriptional regulation in each strain. Our data demonstrate that these three C. sorokiniana strains represent significantly different genomic content. Based on these findings, we propose in- dividualized assessment of each strain for potential performance in cultivation systems.


September 22, 2019  |  

Full-length extension of HLA allele sequences by HLA allele-specific hemizygous Sanger sequencing (SSBT).

The gold standard for typing at the allele level of the highly polymorphic Human Leucocyte Antigen (HLA) gene system is sequence based typing. Since sequencing strategies have mainly focused on identification of the peptide binding groove, full-length sequence information is lacking for >90% of the HLA alleles. One of the goals of the 17th IHIWS workshop is to establish full-length sequences for as many HLA alleles as possible. In our component “Extension of HLA sequences by full-length HLA allele-specific hemizygous Sanger sequencing” we have used full-length hemizygous Sanger Sequence Based Typing to achieve this goal. We selected samples of which full length sequences were not available in the IPD-IMGT/HLA database. In total we have generated the full-length sequences of 48 HLA-A, 45 -B and 31 -C alleles. For HLA-A extended alleles, 39/48 showed no intron differences compared to the first allele of the corresponding allele group, for HLA-B this was 26/45 and for HLA-C 20/31. Comparing the intron sequences to other alleles of the same allele group revealed that in 5/48 HLA-A, 16/45 HLA-B and 8/31 HLA-C alleles the intron sequence was identical to another allele of the same allele group. In the remaining 10 cases, the sequence either showed polymorphism at a conserved nucleotide or was the result of a gene conversion event. Elucidation of the full-length sequence gives insight in the polymorphic content of the alleles and facilitates the identification of its evolutionary origin. Copyright © 2018 American Society for Histocompatibility and Immunogenetics. All rights reserved.


September 22, 2019  |  

A complete Leishmania donovani reference genome identifies novel genetic variations associated with virulence.

Leishmania donovani is responsible for visceral leishmaniasis, a neglected and lethal parasitic disease with limited treatment options and no vaccine. The study of L. donovani has been hindered by the lack of a high-quality reference genome and this can impact experimental outcomes including the identification of virulence genes, drug targets and vaccine development. We therefore generated a complete genome assembly by deep sequencing using a combination of second generation (Illumina) and third generation (PacBio) sequencing technologies. Compared to the current L. donovani assembly, the genome assembly reported within resulted in the closure over 2,000 gaps, the extension of several chromosomes up to telomeric repeats and the re-annotation of close to 15% of protein coding genes and the annotation of hundreds of non-coding RNA genes. It was possible to correctly assemble the highly repetitive A2 and Amastin virulence gene clusters. A comparative sequence analysis using the improved reference genome confirmed 70 published and identified 15 novel genomic differences between closely related visceral and atypical cutaneous disease-causing L. donovani strains providing a more complete map of genes associated with virulence and visceral organ tropism. Bioinformatic tools including protein variation effect analyzer and basic local alignment search tool were used to prioritize a list of potential virulence genes based on mutation severity, gene conservation and function. This complete genome assembly and novel information on virulence factors will support the identification of new drug targets and the development of a vaccine for L. donovani.


September 22, 2019  |  

Whole-genome sequencing of Chinese yellow catfish provides a valuable genetic resource for high-throughput identification of toxin genes.

Naturally derived toxins from animals are good raw materials for drug development. As a representative venomous teleost, Chinese yellow catfish (Pelteobagrus fulvidraco) can provide valuable resources for studies on toxin genes. Its venom glands are located in the pectoral and dorsal fins. Although with such interesting biologic traits and great value in economy, Chinese yellow catfish is still lacking a sequenced genome. Here, we report a high-quality genome assembly of Chinese yellow catfish using a combination of next-generation Illumina and third-generation PacBio sequencing platforms. The final assembly reached 714 Mb, with a contig N50 of 970 kb and a scaffold N50 of 3.65 Mb, respectively. We also annotated 21,562 protein-coding genes, in which 97.59% were assigned at least one functional annotation. Based on the genome sequence, we analyzed toxin genes in Chinese yellow catfish. Finally, we identified 207 toxin genes and classified them into three major groups. Interestingly, we also expanded a previously reported sex-related region (to ˜6 Mb) in the achieved genome assembly, and localized two important toxin genes within this region. In summary, we assembled a high-quality genome of Chinese yellow catfish and performed high-throughput identification of toxin genes from a genomic view. Therefore, the limited number of toxin sequences in public databases will be remarkably improved once we integrate multi-omics data from more and more sequenced species.


September 22, 2019  |  

Acquired interbacterial defense systems protect against interspecies antagonism in the human gut microbiome

The genomes of bacteria derived from the gut microbiota are replete with pathways that mediate contact-dependent interbacterial antagonism. However, the role of direct interactions between co-resident microbes in driving microbiome composition is not well understood. Here we report the widespread occurrence of acquired interbacterial defense (AID) gene clusters in the human gut microbiome. These clusters are found on predicted mobile elements and encode arrays of immunity genes that confer protection against interbacterial toxin-mediated antagonism in vitro and in gnotobiotic mice. We find that Bacteroides ovatus strains containing AID systems that inactivate B. fragilis toxins delivered between cells by the type VI secretion system are enriched in samples lacking detectable B. fragilis. Moreover, these strains display significantly higher abundance in gut metagenomes than strains without AID systems. Finally, we identify a recombinase-associated AID subtype present broadly in Bacteroidales genomes with features suggestive of active gene acquisition. Our data suggest that neutralization of contact-dependent interbacterial antagonism via AID systems plays an important role in shaping human gut microbiome ecology.


September 22, 2019  |  

Genome sequences of two diploid wild relatives of cultivated sweetpotato reveal targets for genetic improvement

Sweetpotato [Ipomoea batatas (L.) Lam.] is a globally important staple food crop, especially for sub-Saharan Africa. Agronomic improvement of sweetpotato has lagged behind other major food crops due to a lack of genomic and genetic resources and inherent challenges in breeding a heterozygous, clonally propagated polyploid. Here, we report the genome sequences of its two diploid relatives, I. trifida and I. triloba, and show that these high-quality genome assemblies are robust references for hexaploid sweetpotato. Comparative and phylogenetic analyses reveal insights into the ancient whole-genome triplication history of Ipomoea and evolutionary relationships within the Batatas complex. Using resequencing data from 16 genotypes widely used in African breeding programs, genes and alleles associated with carotenoid biosynthesis in storage roots are identified, which may enable efficient breeding of varieties with high provitamin A content. These resources will facilitate genome-enabled breeding in this important food security crop.


September 22, 2019  |  

Three New Genome Assemblies Support a Rapid Radiation in Musa acuminata (Wild Banana).

Edible bananas result from interspecific hybridization between Musa acuminata and Musa balbisiana, as well as among subspecies in M. acuminata. Four particular M. acuminata subspecies have been proposed as the main contributors of edible bananas, all of which radiated in a short period of time in southeastern Asia. Clarifying the evolution of these lineages at a whole-genome scale is therefore an important step toward understanding the domestication and diversification of this crop. This study reports the de novo genome assembly and gene annotation of a representative genotype from three different subspecies of M. acuminata. These data are combined with the previously published genome of the fourth subspecies to investigate phylogenetic relationships. Analyses of shared and unique gene families reveal that the four subspecies are quite homogenous, with a core genome representing at least 50% of all genes and very few M. acuminata species-specific gene families. Multiple alignments indicate high sequence identity between homologous single copy-genes, supporting the close relationships of these lineages. Interestingly, phylogenomic analyses demonstrate high levels of gene tree discordance, due to both incomplete lineage sorting and introgression. This pattern suggests rapid radiation within Musa acuminata subspecies that occurred after the divergence with M. balbisiana. Introgression between M. a. ssp. malaccensis and M. a. ssp. burmannica was detected across the genome, though multiple approaches to resolve the subspecies tree converged on the same topology. To support evolutionary and functional analyses, we introduce the PanMusa database, which enables researchers to exploration of individual gene families and trees.


September 22, 2019  |  

Mosaicism diminishes the value of pre-implantation embryo biopsies for detecting CRISPR/Cas9 induced mutations in sheep.

The production of knock-out (KO) livestock models is both expensive and time consuming due to their long gestational interval and low number of offspring. One alternative to increase efficiency is performing a genetic screening to select pre-implantation embryos that have incorporated the desired mutation. Here we report the use of sheep embryo biopsies for detecting CRISPR/Cas9-induced mutations targeting the gene PDX1 prior to embryo transfer. PDX1 is a critical gene for pancreas development and the target gene required for the creation of pancreatogenesis-disabled sheep. We evaluated the viability of biopsied embryos in vitro and in vivo, and we determined the mutation efficiency using PCR combined with gel electrophoresis and digital droplet PCR (ddPCR). Next, we determined the presence of mosaicism in?~?50% of the recovered fetuses employing a clonal sequencing methodology. While the use of biopsies did not compromise embryo viability, the presence of mosaicism diminished the diagnostic value of the technique. If mosaicism could be overcome, pre-implantation embryo biopsies for mutation screening represents a powerful approach that will streamline the creation of KO animals.


September 22, 2019  |  

Evolutionary conservation of Y Chromosome ampliconic gene families despite extensive structural variation.

Despite claims that the mammalian Y Chromosome is on a path to extinction, comparative sequence analysis of primate Y Chromosomes has shown the decay of the ancestral single-copy genes has all but ceased in this eutherian lineage. The suite of single-copy Y-linked genes is highly conserved among the majority of eutherian Y Chromosomes due to strong purifying selection to retain dosage-sensitive genes. In contrast, the ampliconic regions of the Y Chromosome, which contain testis-specific genes that encode the majority of the transcripts on eutherian Y Chromosomes, are rapidly evolving and are thought to undergo species-specific turnover. However, ampliconic genes are known from only a handful of species, limiting insights into their long-term evolutionary dynamics. We used a clone-based sequencing approach employing both long- and short-read sequencing technologies to assemble ~2.4 Mb of representative ampliconic sequence dispersed across the domestic cat Y Chromosome, and identified the major ampliconic gene families and repeat units. We analyzed fluorescence in situ hybridization, qPCR, and whole-genome sequence data from 20 cat species and revealed that ampliconic gene families are conserved across the cat family Felidae but show high transcript diversity, copy number variation, and structural rearrangement. Our analysis of ampliconic gene evolution unveils a complex pattern of long-term gene content stability despite extensive structural variation on a nonrecombining background.© 2018 Brashear et al.; Published by Cold Spring Harbor Laboratory Press.


September 22, 2019  |  

Genomic characterization of a B chromosome in Lake Malawi cichlid fishes.

B chromosomes (Bs) were discovered a century ago, and since then, most studies have focused on describing their distribution and abundance using traditional cytogenetics. Only recently have attempts been made to understand their structure and evolution at the level of DNA sequence. Many questions regarding the origin, structure, function, and evolution of B chromosomes remain unanswered. Here, we identify B chromosome sequences from several species of cichlid fish from Lake Malawi by examining the ratios of DNA sequence coverage in individuals with or without B chromosomes. We examined the efficiency of this method, and compared results using both Illumina and PacBio sequence data. The B chromosome sequences detected in 13 individuals from 7 species were compared to assess the rates of sequence replacement. B-specific sequence common to at least 12 of the 13 datasets were identified as the “Core” B chromosome. The location of B sequence homologs throughout the genome provides further support for theories of B chromosome evolution. Finally, we identified genes and gene fragments located on the B chromosome, some of which may regulate the segregation and maintenance of the B chromosome.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.