Menu
April 21, 2020  |  

Epidemiologic and genomic insights on mcr-1-harbouring Salmonella from diarrhoeal outpatients in Shanghai, China, 2006-2016.

Colistin resistance mediated by mcr-1-harbouring plasmids is an emerging threat in Enterobacteriaceae, like Salmonella. Based on its major contribution to the diarrhoea burden, the epidemic state and threat of mcr-1-harbouring Salmonella in community-acquired infections should be estimated.This retrospective study analysed the mcr-1 gene incidence in Salmonella strains collected from a surveillance on diarrhoeal outpatients in Shanghai Municipality, China, 2006-2016. Molecular characteristics of the mcr-1-positive strains and their plasmids were determined by genome sequencing. The transfer abilities of these plasmids were measured with various conjugation strains, species, and serotypes.Among the 12,053 Salmonella isolates, 37 mcr-1-harbouring strains, in which 35 were serovar Typhimurium, were detected first in 2012 and with increasing frequency after 2015. Most patients infected with mcr-1-harbouring strains were aged <5?years. All strains, including fluoroquinolone-resistant and/or extended-spectrum ß-lactamase-producing strains, were multi-drug resistant. S. Typhimurium had higher mcr-1 plasmid acquisition ability compared with other common serovars. Phylogeny based on the genomes combined with complete plasmid sequences revealed some clusters, suggesting the presence of mcr-1-harbouring Salmonella outbreaks in the community. Most mcr-1-positive strains were clustered together with the pork strains, strongly suggesting pork consumption as a main infection source.The mcr-1-harbouring Salmonella prevalence in community-acquired diarrhoea displays a rapid increase trend, and the ESBL-mcr-1-harbouring Salmonella poses a threat for children. These findings highlight the necessary and significance of prohibiting colistin use in animals and continuous monitoring of mcr-1-harbouring Salmonella.Copyright © 2019. Published by Elsevier B.V.


April 21, 2020  |  

An African Salmonella Typhimurium ST313 sublineage with extensive drug-resistance and signatures of host adaptation.

Bloodstream infections by Salmonella enterica serovar Typhimurium constitute a major health burden in sub-Saharan Africa (SSA). These invasive non-typhoidal (iNTS) infections are dominated by isolates of the antibiotic resistance-associated sequence type (ST) 313. Here, we report emergence of ST313 sublineage II.1 in the Democratic Republic of the Congo. Sublineage II.1 exhibits extensive drug resistance, involving a combination of multidrug resistance, extended spectrum ß-lactamase production and azithromycin resistance. ST313 lineage II.1 isolates harbour an IncHI2 plasmid we name pSTm-ST313-II.1, with one isolate also exhibiting decreased ciprofloxacin susceptibility. Whole genome sequencing reveals that ST313 II.1 isolates have accumulated genetic signatures potentially associated with altered pathogenicity and host adaptation, related to changes observed in biofilm formation and metabolic capacity. Sublineage II.1 emerged at the beginning of the 21st century and is involved in on-going outbreaks. Our data provide evidence of further evolution within the ST313 clade associated with iNTS in SSA.


April 21, 2020  |  

Urinary tract colonization is enhanced by a plasmid that regulates uropathogenic Acinetobacter baumannii chromosomal genes.

Multidrug resistant (MDR) Acinetobacter baumannii poses a growing threat to global health. Research on Acinetobacter pathogenesis has primarily focused on pneumonia and bloodstream infections, even though one in five A. baumannii strains are isolated from urinary sites. In this study, we highlight the role of A. baumannii as a uropathogen. We develop the first A. baumannii catheter-associated urinary tract infection (CAUTI) murine model using UPAB1, a recent MDR urinary isolate. UPAB1 carries the plasmid pAB5, a member of the family of large conjugative plasmids that represses the type VI secretion system (T6SS) in multiple Acinetobacter strains. pAB5 confers niche specificity, as its carriage improves UPAB1 survival in a CAUTI model and decreases virulence in a pneumonia model. Comparative proteomic and transcriptomic analyses show that pAB5 regulates the expression of multiple chromosomally-encoded virulence factors besides T6SS. Our results demonstrate that plasmids can impact bacterial infections by controlling the expression of chromosomal genes.


July 19, 2019  |  

Single-molecule sequencing to track plasmid diversity of hospital-associated carbapenemase-producing Enterobacteriaceae.

Public health officials have raised concerns that plasmid transfer between Enterobacteriaceae species may spread resistance to carbapenems, an antibiotic class of last resort, thereby rendering common health care-associated infections nearly impossible to treat. To determine the diversity of carbapenemase-encoding plasmids and assess their mobility among bacterial species, we performed comprehensive surveillance and genomic sequencing of carbapenem-resistant Enterobacteriaceae in the National Institutes of Health (NIH) Clinical Center patient population and hospital environment. We isolated a repertoire of carbapenemase-encoding Enterobacteriaceae, including multiple strains of Klebsiella pneumoniae, Klebsiella oxytoca, Escherichia coli, Enterobacter cloacae, Citrobacter freundii, and Pantoea species. Long-read genome sequencing with full end-to-end assembly revealed that these organisms carry the carbapenem resistance genes on a wide array of plasmids. K. pneumoniae and E. cloacae isolated simultaneously from a single patient harbored two different carbapenemase-encoding plasmids, indicating that plasmid transfer between organisms was unlikely within this patient. We did, however, find evidence of horizontal transfer of carbapenemase-encoding plasmids between K. pneumoniae, E. cloacae, and C. freundii in the hospital environment. Our data, including full plasmid identification, challenge assumptions about horizontal gene transfer events within patients and identify possible connections between patients and the hospital environment. In addition, we identified a new carbapenemase-encoding plasmid of potentially high clinical impact carried by K. pneumoniae, E. coli, E. cloacae, and Pantoea species, in unrelated patients and in the hospital environment. Copyright © 2014, American Association for the Advancement of Science.


July 19, 2019  |  

Transmission of methicillin-resistant Staphylococcus aureus via deceased donor liver transplantation confirmed by whole genome sequencing.

Donor-derived bacterial infection is a recognized complication of solid organ transplantation (SOT). The present report describes the clinical details and successful outcome in a liver transplant recipient despite transmission of methicillin-resistant Staphylococcus aureus (MRSA) from a deceased donor with MRSA endocarditis and bacteremia. We further describe whole genome sequencing (WGS) and complete de novo assembly of the donor and recipient MRSA isolate genomes, which confirms that both isolates are genetically 100% identical. We propose that similar application of WGS techniques to future investigations of donor bacterial transmission would strengthen the definition of proven bacterial transmission in SOT, particularly in the presence of highly clonal bacteria such as MRSA. WGS will further improve our understanding of the epidemiology of bacterial transmission in SOT and the risk of adverse patient outcomes when it occurs.© Copyright 2014 The American Society of Transplantation and the American Society of Transplant Surgeons.


July 19, 2019  |  

Evolution of hypervirulence by a MRSA clone through acquisition of a transposable element.

Staphylococcus aureus has evolved as a pathogen that causes a range of diseases in humans. There are two dominant modes of evolution thought to explain most of the virulence differences between strains. First, virulence genes may be acquired from other organisms. Second, mutations may cause changes in the regulation and expression of genes. Here we describe an evolutionary event in which transposition of an IS element has a direct impact on virulence gene regulation resulting in hypervirulence. Whole-genome analysis of a methicillin-resistant S. aureus (MRSA) strain USA500 revealed acquisition of a transposable element (IS256) that is absent from close relatives of this strain. Of the multiple copies of IS256 found in the USA500 genome, one was inserted in the promoter sequence of repressor of toxins (Rot), a master transcriptional regulator responsible for the expression of virulence factors in S. aureus. We show that insertion into the rot promoter by IS256 results in the derepression of cytotoxin expression and increased virulence. Taken together, this work provides new insight into evolutionary strategies by which S. aureus is able to modify its virulence properties and demonstrates a novel mechanism by which horizontal gene transfer directly impacts virulence through altering toxin regulation. © 2014 John Wiley & Sons Ltd.


July 19, 2019  |  

Single-molecule sequencing reveals the molecular basis of multidrug-resistance in ST772 methicillin-resistant Staphylococcus aureus.

Methicillin-resistant Staphylococcus aureus (MRSA) is a major cause of hospital-associated infection, but there is growing awareness of the emergence of multidrug-resistant lineages in community settings around the world. One such lineage is ST772-MRSA-V, which has disseminated globally and is increasingly prevalent in India. Here, we present the complete genome sequence of DAR4145, a strain of the ST772-MRSA-V lineage from India, and investigate its genomic characteristics in regards to antibiotic resistance and virulence factors.Sequencing using single-molecule real-time technology resulted in the assembly of a single continuous chromosomal sequence, which was error-corrected, annotated and compared to nine draft genome assemblies of ST772-MRSA-V from Australia, Malaysia and India. We discovered numerous and redundant resistance genes associated with mobile genetic elements (MGEs) and known core genome mutations that explain the highly antibiotic resistant phenotype of DAR4145. Staphylococcal toxins and superantigens, including the leukotoxin Panton-Valentinin Leukocidin, were predominantly associated with genomic islands and the phage f-IND772PVL. Some of these mobile resistance and virulence factors were variably present in other strains of the ST772-MRSA-V lineage.The genomic characteristics presented here emphasize the contribution of MGEs to the emergence of multidrug-resistant and highly virulent strains of community-associated MRSA. Antibiotic resistance was further augmented by chromosomal mutations and redundancy of resistance genes. The complete genome of DAR4145 provides a valuable resource for future investigations into the global dissemination and phylogeography of ST772-MRSA-V.


July 19, 2019  |  

Complete bypass of restriction systems for major Staphylococcus aureus lineages.

Staphylococcus aureus is a prominent global nosocomial and community-acquired bacterial pathogen. A strong restriction barrier presents a major hurdle for the introduction of recombinant DNA into clinical isolates of S. aureus. Here, we describe the construction and characterization of the IMXXB series of Escherichia coli strains that mimic the type I adenine methylation profiles of S. aureus clonal complexes 1, 8, 30, and ST93. The IMXXB strains enable direct, high-efficiency transformation and streamlined genetic manipulation of major S. aureus lineages.The genetic manipulation of clinical S. aureus isolates has been hampered due to the presence of restriction modification barriers that detect and subsequently degrade inappropriately methylated DNA. Current methods allow the introduction of plasmid DNA into a limited subset of S. aureus strains at high efficiency after passage of plasmid DNA through the restriction-negative, modification-proficient strain RN4220. Here, we have constructed and validated a suite of E. coli strains that mimic the adenine methylation profiles of different clonal complexes and show high-efficiency plasmid DNA transfer. The ability to bypass RN4220 will reduce the cost and time involved for plasmid transfer into S. aureus. The IMXXB series of E. coli strains should expedite the process of mutant construction in diverse genetic backgrounds and allow the application of new techniques to the genetic manipulation of S. aureus. Copyright © 2015 Monk et al.


July 19, 2019  |  

Genetic stabilization of the drug-resistant PMEN1 Pneumococcus lineage by its distinctive DpnIII restriction-modification system.

The human pathogen Streptococcus pneumoniae (pneumococcus) exhibits a high degree of genomic diversity and plasticity. Isolates with high genomic similarity are grouped into lineages that undergo homologous recombination at variable rates. PMEN1 is a pandemic, multidrug-resistant lineage. Heterologous gene exchange between PMEN1 and non-PMEN1 isolates is directional, with extensive gene transfer from PMEN1 strains and only modest transfer into PMEN1 strains. Restriction-modification (R-M) systems can restrict horizontal gene transfer, yet most pneumococcal strains code for either the DpnI or DpnII R-M system and neither limits homologous recombination. Our comparative genomic analysis revealed that PMEN1 isolates code for DpnIII, a third R-M system syntenic to the other Dpn systems. Characterization of DpnIII demonstrated that the endonuclease cleaves unmethylated double-stranded DNA at the tetramer sequence 5′ GATC 3′, and the cognate methylase is a C5 cytosine-specific DNA methylase. We show that DpnIII decreases the frequency of recombination under in vitro conditions, such that the number of transformants is lower for strains transformed with unmethylated DNA than in those transformed with cognately methylated DNA. Furthermore, we have identified two PMEN1 isolates where the DpnIII endonuclease is disrupted, and phylogenetic work by Croucher and colleagues suggests that these strains have accumulated genomic differences at a higher rate than other PMEN1 strains. We propose that the R-M locus is a major determinant of genetic acquisition; the resident R-M system governs the extent of genome plasticity.Pneumococcus is one of the most important community-acquired bacterial pathogens. Pneumococcal strains can develop resistance to antibiotics and to serotype vaccines by acquiring genes from other strains or species. Thus, genomic plasticity is associated with strain adaptability and pneumococcal success. PMEN1 is a widespread and multidrug-resistant highly pathogenic pneumococcal lineage, which has evolved over the past century and displays a relatively stable genome. In this study, we characterize DpnIII, a restriction-modification (R-M) system that limits recombination. DpnIII is encountered in the PMEN1 lineage, where it replaces other R-M systems that do not decrease plasticity. Our hypothesis is that this genomic region, where different pneumococcal lineages code for variable R-M systems, plays a role in the fine-tuning of the extent of genomic plasticity. It is possible that well-adapted lineages such as PMEN1 have a mechanism to increase genomic stability, rather than foster genomic plasticity. Copyright © 2015 Eutsey et al.


July 19, 2019  |  

Parallel epidemics of community-associated methicillin-resistant Staphylococcus aureus USA300 infection in North and South America.

The community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) epidemic in the United States is attributed to the spread of the USA300 clone. An epidemic of CA-MRSA closely related to USA300 has occurred in northern South America (USA300 Latin-American variant, USA300-LV). Using phylogenomic analysis, we aimed to understand the relationships between these 2 epidemics.We sequenced the genomes of 51 MRSA clinical isolates collected between 1999 and 2012 from the United States, Colombia, Venezuela, and Ecuador. Phylogenetic analysis was used to infer the relationships and times since the divergence of the major clades.Phylogenetic analyses revealed 2 dominant clades that segregated by geographical region, had a putative common ancestor in 1975, and originated in 1989, in North America, and in 1985, in South America. Emergence of these parallel epidemics coincides with the independent acquisition of the arginine catabolic mobile element (ACME) in North American isolates and a novel copper and mercury resistance (COMER) mobile element in South American isolates.Our results reveal the existence of 2 parallel USA300 epidemics that shared a recent common ancestor. The simultaneous rapid dissemination of these 2 epidemic clades suggests the presence of shared, potentially convergent adaptations that enhance fitness and ability to spread.© The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.


July 19, 2019  |  

A biphasic epigenetic switch controls immunoevasion, virulence and niche adaptation in non-typeable Haemophilus influenzae.

Non-typeable Haemophilus influenzae contains an N(6)-adenine DNA-methyltransferase (ModA) that is subject to phase-variable expression (random ON/OFF switching). Five modA alleles, modA2, modA4, modA5, modA9 and modA10, account for over two-thirds of clinical otitis media isolates surveyed. Here, we use single molecule, real-time (SMRT) methylome analysis to identify the DNA-recognition motifs for all five of these modA alleles. Phase variation of these alleles regulates multiple proteins including vaccine candidates, and key virulence phenotypes such as antibiotic resistance (modA2, modA5, modA10), biofilm formation (modA2) and immunoevasion (modA4). Analyses of a modA2 strain in the chinchilla model of otitis media show a clear selection for ON switching of modA2 in the middle ear. Our results indicate that a biphasic epigenetic switch can control bacterial virulence, immunoevasion and niche adaptation in an animal model system.


July 19, 2019  |  

Initial assessment of the molecular epidemiology of blaNDM-1 in Colombia.

We report complete genome sequences of fourblaNDM-1-harboring Gram-negative multidrug resistant (MDR) isolates from Colombia. TheblaNDM-1genes were located 193Kb-Inc FIA, 178Kb-Inc A/C2 and 47Kb (unknown Inc type) plasmids. MLST revealed that isolates belong to ST10 (Escherichia coli), ST392 (Klebsiella pneumoniae), and ST322 and ST464 (Acinetobacter baumanniiandA. nosocomialis, respectively). Our analysis identified that the Inc A/C2 plasmid inE. colicontained a novel complex transposon (Tn125and Tn5393with 3 copies ofblaNDM-1) and a recombination “hotspot” for the acquisition of new resistance determinants. Copyright © 2016, American Society for Microbiology. All Rights Reserved.


July 19, 2019  |  

DNA target recognition domains in the Type I restriction and modification systems of Staphylococcus aureus.

Staphylococcus aureus displays a clonal population structure in which horizontal gene transfer between different lineages is extremely rare. This is due, in part, to the presence of a Type I DNA restriction–modification (RM) system given the generic name of Sau1, which maintains different patterns of methylation on specific target sequences on the genomes of different lineages. We have determined the target sequences recognized by the Sau1 Type I RM systems present in a wide range of the most prevalent S. aureus lineages and assigned the sequences recognized to particular target recognition domains within the RM enzymes. We used a range of biochemical assays on purified enzymes and single molecule real-time sequencing on genomic DNA to determine these target sequences and their patterns of methylation. Knowledge of the main target sequences for Sau1 will facilitate the synthesis of new vectors for transformation of the most prevalent lineages of this ‘untransformable’ bacterium.


July 19, 2019  |  

Comprehensive bioinformatics analysis of Mycoplasma pneumoniae genomes to investigate underlying population structure and type-specific determinants.

Mycoplasma pneumoniae is a significant cause of respiratory illness worldwide. Despite a minimal and highly conserved genome, genetic diversity within the species may impact disease. We performed whole genome sequencing (WGS) analysis of 107 M. pneumoniae isolates, including 67 newly sequenced using the Pacific BioSciences RS II and/or Illumina MiSeq sequencing platforms. Comparative genomic analysis of 107 genomes revealed >3,000 single nucleotide polymorphisms (SNPs) in total, including 520 type-specific SNPs. Population structure analysis supported the existence of six distinct subgroups, three within each type. We developed a predictive model to classify an isolate based on whole genome SNPs called against the reference genome into the identified subtypes, obviating the need for genome assembly. This study is the most comprehensive WGS analysis for M. pneumoniae to date, underscoring the power of combining complementary sequencing technologies to overcome difficult-to-sequence regions and highlighting potential differential genomic signatures in M. pneumoniae.


July 7, 2019  |  

Burkholderia pseudomallei sequencing identifies genomic clades with distinct recombination, accessory, and epigenetic profiles.

Burkholderia pseudomallei (Bp) is the causative agent of the infectious disease melioidosis. To investigate population diversity, recombination, and horizontal gene transfer in closely related Bp isolates, we performed whole-genome sequencing (WGS) on 106 clinical, animal, and environmental strains from a restricted Asian locale. Whole-genome phylogenies resolved multiple genomic clades of Bp, largely congruent with multilocus sequence typing (MLST). We discovered widespread recombination in the Bp core genome, involving hundreds of regions associated with multiple haplotypes. Highly recombinant regions exhibited functional enrichments that may contribute to virulence. We observed clade-specific patterns of recombination and accessory gene exchange, and provide evidence that this is likely due to ongoing recombination between clade members. Reciprocally, interclade exchanges were rarely observed, suggesting mechanisms restricting gene flow between clades. Interrogation of accessory elements revealed that each clade harbored a distinct complement of restriction-modification (RM) systems, predicted to cause clade-specific patterns of DNA methylation. Using methylome sequencing, we confirmed that representative strains from separate clades indeed exhibit distinct methylation profiles. Finally, using an E. coli system, we demonstrate that Bp RM systems can inhibit uptake of non-self DNA. Our data suggest that RM systems borne on mobile elements, besides preventing foreign DNA invasion, may also contribute to limiting exchanges of genetic material between individuals of the same species. Genomic clades may thus represent functional units of genetic isolation in Bp, modulating intraspecies genetic diversity. © 2015 Nandi et al.; Published by Cold Spring Harbor Laboratory Press.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.