X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Thursday, January 7, 2021

Case Study: Pioneering a pan-genome reference collection

At DuPont Pioneer, DNA sequencing is paramount for R&D to reveal the genetic basis for traits of interest in commercial crops such as maize, soybean, sorghum, sunflower, alfalfa, canola, wheat, rice, and others. They cannot afford to wait the years it has historically taken for high-quality reference genomes to be produced. Nor can they rely on a single reference to represent the genetic diversity in its germplasm.

Read More »

Wednesday, January 6, 2021

AGBT 2015 Highlights: Customer interviews day 1

PacBio customers discuss their applications of PacBio SMRT Sequencing and long reads, including Lemuel Racacho (Children’s Hospital of Eastern Ontario Research Institute), Matthew Blow (JGI), Yuta Suzuki (U. of Tokyo), Daniel Geraghty (Fred Hutchinson Cancer Center), and Mike Schatz (CSHL)

Read More »

Wednesday, January 6, 2021

AGBT PacBio Workshop: Full workshop recording

PacBio customers and thought leaders discuss the role SMRT sequencing is playing in comprehensive genomics: past, present, and future. Featuring J. Craig Venter, Gene Myers, Deanna Church, Jeong-Sun Seo and W. Richard McCombie.

Read More »

Wednesday, January 6, 2021

Podcast: Frontiers of sequencing – Putting long reads and graph assemblies to work

The Mike Schatz lab at Cold Spring Harbor is well know for de novo genome assemblies and their work on structural variation in cancer genomes. In this Mendelspod podcast, lab leader, Mike Schatz, and doctorate student, Maria Nattestad tell of two new projects that include the de novo assembly of a very difficult but important flatworm genome and, secondly, making better variant calls for oncogenes such as HER2.

Read More »

Wednesday, January 6, 2021

Webinar: Analysis and visualization tools for long reads, assemblies and complex variation

This presentation describes a new genome browser for read alignments around complex variation: genomeribbon.com. Ribbon was built for viewing genomic read alignments around structural variants. It is very useful for looking at long-read alignments where we can see a complicated set of variants captured within individual reads. Ribbon can also be used to view assembly alignments such as from MUMmer.

Read More »

Wednesday, January 6, 2021

AGBT Conference: Personalized phased diploid genomes of the EN-TEx samples

At AGBT 2017, Mike Schatz from Johns Hopkins University and Cold Spring Harbor Laboratory presented data from sequencing, assembling, and analyzing personalized, phased diploid genomes with either Illumina, 10x Genomics, and PacBio SMRT Sequencing. Compared to the short-read-based methods, PacBio data assembled in large, complete contigs and contained the broadest range of structural variants with the best resolution. Plus: unexpected translocation findings with SMRT Sequencing, validated in follow-up studies.

Read More »

Tuesday, December 22, 2020

Haplotyping using full-length transcript sequencing reveals allele-specific expression

An important need in analyzing complex genomes is the ability to separate and phase haplotypes. While whole genome assembly can deliver this information, it cannot reveal whether there is allele-specific gene or isoform expression. The PacBio Iso-Seq method, which can produce high-quality transcript sequences of 10 kb and longer, has been used to annotate many important plant and animal genomes. We present an algorithm called IsoPhase that post-processes Iso-Seq data for transcript-based haplotyping. We applied IsoPhase to a maize Iso-Seq dataset consisting of two homozygous parents and two F1 cross hybrids. We validated the majority of the SNPs called with…

Read More »

Tuesday, December 22, 2020

A workflow for the comprehensive detection and prioritization of variants in human genomes with PacBio HiFi reads

PacBio HiFi reads (minimum 99% accuracy, 15-25 kb read length) have emerged as a powerful data type for comprehensive variant detection in human genomes. The HiFi read length extends confident mapping and variant calling to repetitive regions of the genome that are not accessible with short reads. Read length also improves detection of structural variants (SVs), with recall exceeding that of short reads by over 30%. High read quality allows for accurate single nucleotide variant and small indel detection, with precision and recall matching that of short reads. While many tools have been developed to take advantage of these qualities…

Read More »

Tuesday, December 22, 2020

The resurgence of reference quality genome sequence.

Since the advent of Next-Generation Sequencing (NGS), the cost of de novo genome sequencing and assembly have dropped precipitately, which has spurred interest in genome sequencing overall. Unfortunately the contiguity of the NGS assembled sequences, as well as the accuracy of these assemblies have suffered. Additionally, most NGS de novo assemblies leave large portions of genomes unresolved, and repetitive regions are often collapsed. When compared to the reference quality genome sequences produced before the NGS era, the new sequences are highly fragmented and often prove to be difficult to properly annotate. In some cases the contiguous portions are smaller than…

Read More »

Tuesday, December 22, 2020

Near perfect de novo assemblies of eukaryotic genomes using PacBio long read sequencing.

Third generation single molecule sequencing technology from Pacific Biosciences, Moleculo, Oxford Nanopore, and other companies are revolutionizing genomics by enabling the sequencing of long, individual molecules of DNA and RNA. One major advantage of these technologies over current short read sequencing is the ability to sequence much longer molecules, thousands or tens of thousands of nucleotides instead of mere hundreds. This capacity gives researchers substantially greater power to probe into microbial, plant, and animal genomes, but it remains unknown on how to best use these data. To answer this, we systematically evaluated the human genome and 25 other important genomes…

Read More »

1 2 3

Subscribe for blog updates:

Archives